Math 309: Introduction to knot theory
 Assignment 5, due Monday November 9 by 11:59 pm.

Exercises.

1. Show that the span of the Jones polynomial of a reduced alternating diagram gives exactly the crossing number of the diagram.
2. Fix a reduced alternating diagram D. Let S_{B} be the state associated with D that is obtained by considering B-splits are every crossing. Show that the bottom power that this state contributes to the bracket polynomial is $-n-2(\mathcal{S}-1)$, where n is the number of crossings in D and \mathcal{S} is the number of shaded regions in the checkerboard shading of D.
3. Consider the following diagram and the associated state S_{1} shown:

List all states S_{2} that can be obtained from S_{1}, switching one resolution, so that $b\left(S_{2}\right)=b\left(S_{1}\right)+1$.
4. During lectures, we proved that the bracket polynomial is unchanged by mutation. What conditions on a tangle need to be satisfied in order to ensure that the Jones polynomial is not changed by a mutation? What does this imply about the Jones polynomial of a knot and its mutants? Be sure to Justify your answers!

Problems

5. Let D be a reduced alternating diagram, and let S_{A} be the state obtained from D by choosing the A-split at every crossing. Show that the highest power of A contributed to $\langle D\rangle$ by S_{A} is strictly larger than that of any state for D with exactly one B-split.
6. Consider the tangles T_{1} (left) and T_{2} (right) shown:

(a) Calculate $\left\langle T_{1}\right\rangle$.
(b) Calculate $\left\langle T_{2}\right\rangle$. (I suggest breaking this into 2 tangles first, noting that you calculated the bracket of the rational tangles -1 and -2 along the way in your answer for part (a), and then reassembling the pieces.)
(c) Combining parts (a) and (b), compute the bracket polynomial of the following knot:

