Math 309: Introduction to knot theory Assignment 7, due Monday December 7 by 11:59 pm.

Exercises.

1. Consider the braid $\beta=\sigma_{2}^{3} \sigma_{1} \sigma_{2}^{-1} \sigma_{1}$. Identify the knot in the table obtained by taking the braid closure $\bar{\beta}$.
2. Show that the braids σ_{1}^{3} and $\left(\sigma_{1} \sigma_{2}\right)^{2}$ are Markov equivalent by giving an explicit list of Markov moves and braid moves.
3. Pick a non-alternating 8 crossing knot and prove that its braid index is at most 3 .
4. The braid groups are not abelian in general: find braids β_{1} and β_{2} for which $\beta_{1} \beta_{2}$ and $\beta_{2} \beta_{1}$ are not equivalent. (To prove inequivalence, try considering the associated permutations.)

Problems

5. A group is a set equipped with an associative binary operation (often called multiplication) and a special element called the unit. A simple example is given by $(\mathbb{Z},+)$ where \mathbb{Z} denotes the integers and + is the usual addition.
(a) Give the definition of a group homomorphism from a group G_{1} to a group G_{2}.
(b) If B_{2} is the two-strand braid group, show that there is a homomorphism from B_{2} to \mathbb{Z}. Similarly, show that there is a homomorphism from \mathbb{Z} to B_{2}.
(c) Give the definition of a group isomorphism between groups G_{1} and G_{2}. Are B_{2} and \mathbb{Z} isomorphic groups? Why or why not?
6. Using Artin combing, show that each of the following braids is non-trivial in the 3 -strand braid group.

(At some stage, in your argument, I anticipate an appeal to Problem 5!)
