Math 309: Introduction to knot theory Assignment 7, due Monday December 7 by 11:59 pm.

Exercises.

- 1. Consider the braid $\beta = \sigma_2^3 \sigma_1 \sigma_2^{-1} \sigma_1$. Identify the knot in the table obtained by taking the braid closure $\bar{\beta}$.
- **2.** Show that the braids σ_1^3 and $(\sigma_1\sigma_2)^2$ are Markov equivalent by giving an explicit list of Markov moves and braid moves.
- 3. Pick a non-alternating 8 crossing knot and prove that its braid index is at most 3.
- **4.** The braid groups are not abelian in general: find braids β_1 and β_2 for which $\beta_1\beta_2$ and $\beta_2\beta_1$ are not equivalent. (To prove inequivalence, try considering the associated permutations.)

Problems

- **5.** A group is a set equipped with an associative binary operation (often called multiplication) and a special element called the unit. A simple example is given by $(\mathbb{Z}, +)$ where \mathbb{Z} denotes the integers and + is the usual addition.
- (a) Give the definition of a group homomorphism from a group G_1 to a group G_2 .
- (b) If B_2 is the two-strand braid group, show that there is a homomorphism from B_2 to \mathbb{Z} . Similarly, show that there is a homomorphism from \mathbb{Z} to B_2 .
- (c) Give the definition of a group isomorphism between groups G_1 and G_2 . Are B_2 and \mathbb{Z} isomorphic groups? Why or why not?
- **6.** Using Artin combing, show that each of the following braids is non-trivial in the 3-strand braid group.

(At some stage, in your argument, I anticipate an appeal to Problem 5!)