LECTURE # 13

RECALL THAT THE BOUNDARY OF A POLYGON CONSISTS OF VERTICES (CORNERS) AND EDGES.

HOW DO A COLLECTION OF REGULAR POLYGONS MEET AT A VERTEX IN A TILING?

\[
\begin{array}{c}
\text{P}_2 \quad n_2 \text{-gon} \\
\text{P}_3 \quad n_3 \text{-gon} \\
\text{P}_1 \quad n_1 \text{-gon}
\end{array}
\]

\[\sum_{i=1}^{\infty} \eta_i \in \mathbb{Z}_{>2} \]

GIVEN \(P_i \), WHAT IS \(\Theta_i \)?

\[\Theta_i = \beta_i + \gamma_i \]

\[\alpha = \frac{1}{n} 2\pi \]

\[\Rightarrow \alpha + \beta + \gamma = \pi \]

\[\Theta_i = \beta_i + \gamma_i = \frac{n_i \pi}{\eta_i} - \frac{2\pi}{\eta_i} = \frac{\eta_i - 2}{\eta_i} \pi \]

\[\text{EX} \quad (n = 3) \]

\[\Theta = \frac{\eta - 2}{n} \pi = \frac{3 - 2}{3} \pi = \frac{1}{3} \pi \]

SO WHEN THE \(P_i \) FIT TOGETHER IN A TILING WE NEED

\[\sum_{i=1}^{\infty} \Theta_i = \sum_{i=1}^{\infty} \frac{\eta_i - 2}{\eta_i} \pi = 2\pi \]

THIS IS THE SAME AS REQUIRING:

\[\sum_{i=1}^{\infty} \frac{\eta_i - 2}{\eta_i} = 2 \]
We've seen monohedral tilings by regular polygons...

1. \(n = 3 \)
 \[
 \frac{n-2}{n} = \frac{1}{3} \quad \therefore \quad 2 = 6 \cdot \frac{1}{3}
 \]
 (6 equilateral triangles meet at a vertex)

2. \(n = 4 \)
 \[
 \frac{n-2}{n} = \frac{1}{2} \quad \therefore \quad 2 = \frac{4}{2}
 \]

3. \(n = 6 \)
 \[
 \frac{n-2}{n} = \frac{4}{6} = \frac{2}{3} \quad \therefore \quad 2 = 3 \cdot \frac{2}{3}
 \]

Why did we stop at \(n = 5 \)?
\[
\frac{n-2}{n} = \frac{3}{5} \]

But 2 does not divide \(\frac{3}{5} \).
\[
3 \cdot \frac{3}{5} < 2 < 4 \cdot \frac{3}{5}
\]

Too few 5-gons.
Too many 5-gons.

What about \(n > 6 \)? What happens for \(n \gg 0 \)?

In general, we could ask:

For a fixed \(r \), how many of each \(n_r \)-gon \(P_n \) is needed?

Which \(r \) are possible?

For example, for \(n \) fixed only \(n = 3, 4, 6 \) is possible.
When we start to mix and match, things get more interesting. Some examples:

1) What if we mix squares and triangles? Then

\[\frac{3 - 2}{3} + \frac{4 - 2}{4} = 2 \]

\[\frac{1}{3} + \frac{1}{2} = 2 \]

A combination that works: \(k = 3, l = 2 \) (are there others?)

There are two possible assemblies!

2) Most interesting is when 3 different \(n \)-gons interact. What triples \(\{n_1, n_2, n_3\} \) are possible?

A surprising combination involves a \(42 \)-gon:

\[\frac{n_1 - 2}{n_1} + \frac{n_2 - 2}{n_2} + \frac{40}{42} = 2 \]

\[42 \left(n_2 (n_1 - 2) + n_1 (n_2 - 2) \right) + 40n_1n_2 = 2 \cdot 42n_1n_2 \]

\[\frac{1}{3} + \frac{5}{7} + \frac{40}{42} = 2 \]

\[n_1 = 3, n_2 = 7 \]

Try this! (Solution next page)
How to deduce $n_1 = 3, n_2 = 7$...

\[42(n_1(n_2-2) + n_1(n_2-2)) + 40n_1n_2 = 2 \cdot 42 n_1n_2 \]

\[2 \cdot 42 n_1n_2 - 2 \cdot 42 n_2 = 2 \cdot 42 n_1 + 40n_1n_2 = 2 \cdot 42 n_1n_2 \]

\[10n_1n_2 = 21(n_1 + n_2) \]

Note that $10 = 5 \cdot 2$ and $21 = 7 \cdot 3$. So

1. n_1n_2 should be (a multiple of) 21
2. $n_1 + n_2$ should be (a multiple of) 10

(Think about prime factors; the common multiple divides out.)

So $n_1n_2 = 21$ and $n_1 + n_2 = 10$ gives $n_1 = 3, n_2 = 7$.