LAST TIME: HOMEOMORPHISM AND CONTINUITY.

A HOMEOMORPHISM \(\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is a continuous bijection (with continuous inverse).

RMK: IF \(A \) is a \(2 \times 2 \) matrix it is invertible if \(\det(A) \neq 0 \) and the linear transformations from \(A \) and \(A^{-1} \).

Now any affine \(\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) with linear part \(A \) is a homeomorphism.

For \(\varphi \) to be compatible with \(S(\varphi_1) \) and \(S(\varphi_2) \) we require:

For any \(g \in S(\varphi_1) \) there exists a \(g_2 \in S(\varphi_2) \) such that

\[
\varphi_1 \rightarrow \varphi_2 \\
g_1 \rightarrow \varphi \rightarrow g_2 = \varphi \circ g_1 \circ \varphi^{-1}
\]

RMK: For \(x \in \mathbb{R}^2 \) we have \(g_2(x) = (\varphi \circ g_1 \circ \varphi^{-1})(x) = \varphi(g_1(\varphi(x))) \)

or

\[
(g_2 \circ \varphi)(x) = (\varphi \circ g_1)(x)
\]

\(\psi \circ g_1 \circ \psi^{-1} \in S(\varphi_2) \) so if \(\varphi \) compatible \(\psi \) exists, \(S(\varphi_1) \) and \(S(\varphi_2) \) agree.

We have made use of this fact: if a planar operation \(\psi \) is a symmetry, then \(\varphi_1 \) and \(\varphi_2 \) are different.

IMPORTANT: "BEING EQUAL" AND "BEING OF THE SAME TYPE" ARE NOT THE SAME THING!
REAP FROM LAST TIME.

Corners are elements of a tile \(T \).

\[\begin{array}{c}
\text{PT} \\
\text{of } T
\end{array} \quad \begin{array}{c}
\text{ Graph of some } f(x) \\
\text{ which is continuous and has a }
\text{derivative at } a
\end{array} \]

\[f \text{ does not have a }
\text{derivative at } a \]

\(T \) is a continuous non-intersecting derivative here; this
came in the plane; it has
a finite number of corners \(\{ c_i \}_{i=1}^N \).

Sides of \(T \) := components of \(\partial T \) \(\{ c_i \} \) when \(T \) is
a polygon; sides
are line segments.

Vertices are elements of a thing \(J \).

Consider \(T_1, T_2, \ldots, T_n \in J \). We have either:

\[\bigcap_{i=1}^n T_i \neq \phi \quad \text{or} \quad \bigcap_{i=1}^n T_i \subset \partial T_i \quad i = 1, 2, \ldots, n. \]

So intersections consist of points and arcs.

\[\text{ "vertices" } \quad \text{ "edges"} \]

\(\text{ EXP } \)

\[\begin{array}{c}
T_1 \\
T_2 \\
T_3
\end{array} \quad \begin{array}{c}
\text{ edge} \\
\text{ vertex}
\end{array} \]

Remark: not all corners are vertices; a vertex
is the corner of some tile.
In a normal tiling, to fill this in, we need some non-regular tiling.

Homothety.

Def \(T_1 \) and \(T_2 \) are "homothetic" or "homothety equivalent" if there is a compatible homeomorphism \(\Psi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \)

such that \(\Psi(0,0) = T_2 \).

\[\text{Write } T_1 \leftrightarrow T_2 \]

Exp \(\Psi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \)

\[(x,y) \rightarrow (x, y + \alpha \sin(\pi x)) \]. For \(\alpha > 0 \).

What does this do to the x axis?

\[\Psi(x,0) = (x, \alpha \sin(\pi x)) \]

This changes:

\[\begin{array}{c|c}
\hline
0 & 1 \\
\hline
\end{array} \]

\[\begin{array}{c|c}
\hline
0 & 1 \\
\hline
\end{array} \]

This becomes:
Now if \(T_\alpha \) is the tiling we get from lines
\[\{ x = n \} \cup \mathbb{Z} \quad \text{and} \quad \{ y = \alpha \sin(\pi x) + n \} \cup \mathbb{Z} \]

then

1. \(T_0 \) is not homothety equivalent to \(T_\alpha \) for any \(\alpha > 0 \).

2. \(T_\alpha \) is homothety equivalent to \(T_\alpha' \) for any \(\alpha > \alpha' > 0 \).

Hence all corners are vertices in this example.

Claim: \(T_\alpha \) homothetic to \(T_\alpha \) for all \(\alpha \). Hence
\(T_\alpha \) homothetic to \(T_\alpha' \) for any \(\alpha, \alpha' \in \mathbb{R}^+ \).

Good time to remind yourself what \(\Rightarrow \) means for tilings.
"Homotopy is an equivalence relation on tilings:

\[T_1 \xrightarrow{\Psi} T_2 \iff \Psi \text{ is a compatible homeomorphism.} \]

Terminology: \(\Psi \) is the homotopy from \(T_1 \) to \(T_2 \).

Since \(\Psi \) is a bijection, we always have \(T_2 \xrightarrow{\Psi^{-1}} T_1 \) as well.

(This is part of the check it's an equivalence relation.)

Homotopy is weaker than equality.

\[\text{Homomorphism...} \quad \text{Similarity...} \]

(As if tilings are equal they are homotopic, but...)

Pop a homotopy takes vertices of \(T_1 \) to vertices of \(T_2 \).

Proof: Let \(v_i \) vertex of \(T_1 \); \(i \equiv 1, 2 \).

Given \(\Psi: T_1 \rightarrow T_2 \) and \(g \in S(T_2) \)

compatibility allows us to construct

\[\Psi^* g, \Psi \in S(T) \]

Now \(g(v_0) \) must be a vertex of \(T_2 \):

\[(\Psi^* g, \Psi)(v_1) \text{ must be a vertex of } T_1. \]

The only way for this to happen is with \(\Psi(v_1) = v_2 \).
\[
Y(x, y) = (x, y + \alpha \sin(\pi x)) \text{ for } \alpha > 0.
\]

This fixes the lines \(\{ x = n \} \text{ for } n \in \mathbb{Z} \).

It carries lines \(\{ y = n \} \) to curves \(\{ y = \alpha \sin(\pi x) + n \} \).

* Vertices go to vertices, as claimed.
 (and all corners are vertices).

\[
T_{\alpha'} = \text{new times}
\]

Call the result \(T_{\alpha'} \); note \(T_{0} = T_{0} \).

Claim: \(T_{\alpha} \) is homotopic to \(T_{0} \) for all \(\alpha \);
\(T_{\alpha} \) is homotopic to \(T_{\alpha'} \) for any \(\alpha > \alpha' > 0 \).
WE NEED TO BUILD \[J' : J_0 \rightarrow J'_0 \]

THIS \(J' \) CAN'T BE LINEAR (WHY?)

BUT IT IS LINEAR IN VERTICAL STRIPS:

CONSIDER \([n, n + \frac{1}{2}] \times \mathbb{R}\) FOR \(n \in \mathbb{Z}\).

\[
\begin{array}{c|c|c}
\hline
m & m + 1 & m + 2 \\
\hline
n & n + \frac{1}{2} & n + 1 \\
\hline
\end{array}
\]

TYPICAL TILE

NOTE: THIS IS A HOMEOMORPHISM ON \([n, n + \frac{1}{2}] \times \mathbb{R}\).

NOW CONSIDER \([n + \frac{1}{2}, n + 1] \times \mathbb{R}\) FOR \(n \in \mathbb{Z}\).

\[
\begin{array}{c|c|c}
\hline
m & m + 1 & m + 2 \\
\hline
n + \frac{1}{2} & n + 1 \\
\hline
\end{array}
\]

THESE SHEARS AGREE ON \([n + \frac{1}{2}, n + 1] \times \mathbb{R}\), SO WE GET A HOMEOMORPHISM ON \([n, n + 1] \times \mathbb{R}\) THAT IS THE IDENTITY ON \(\mathbb{Z} \times \mathbb{R}\).

NEXT TIME: POLYGONAL ISOHEXRAL TYPE.