LECTURE 32

LAST TIME

\[\Theta = \frac{\pi}{3} (36^\circ) \]

This is related to Houdini's construction by decorations:

So that:

- Star
- Then pentagons
- Then darts
- Then kites

\[nK + mD = A\text{ PATCH} \]

Consisting of n kites and m darts

We saw that 2K + D gives a new (larger) kite:

\[T = \frac{1 + \sqrt{5}}{2} \]

"Golden Nuage"
This gives rise to a new composition sequence giving a similarity of a kite-dart tiling (assuming we've constructed one).

Let \(k_n \) be the number of kites after \(n \) compositions.

Let \(d_n \) be the number of darts after \(n \) compositions.

Note that we compose 2 kites + \(\left(\frac{1}{2} + \frac{1}{2} \right) \) darts to get a kite.

\[k_{n+1} = 2k_n + d_n \]

And we compose 1 kite and \(\left(\frac{1}{2} + \frac{1}{2} \right) \) darts to get a new dart.

\[d_{n+1} = k_n + d_n \]

Consider the ratio:

\[\frac{k_{n+1}}{d_{n+1}} = \frac{2k_n + d_n}{k_n + d_n} = \frac{1 + \frac{k_n}{d_n}}{1 + \frac{k_n}{d_n}} \]

If this ratio is \(x \), notice that when \(n \to \infty \)

\[x = \frac{1 + 2x}{1 + x} \]

\[\frac{1 + x}{1 + x} x = 1 + 2x \]

\[x^2 - x - 1 = 0 \]

The positive root of \(x^2 - x - 1 = 0 \) is our kite-dart ratio (in the limit):

\[x = \frac{1 + \sqrt{5}}{2} \]
In your homework, you will see that a periodic difference thing must have rational ratio.

So the fact that $x = \frac{1 + \sqrt{3}}{2}$, which is irrational, shows up guarantees non-periodicity.

Here's an example: