Math 427/527: algebraic topology Homework problem for Lecture 1.

Let Free: Set \rightarrow abGrp be the functor defined by $Free(X) = \bigoplus_X \mathbb{Z}$ and let Forget: abGrp \rightarrow Set be the functor defined by forgetting the group structure, that is, Forget(G) is underlying set of G.

(a) The operations \times and \otimes turn Set and abGrp, respectively, into symmetric monoidal categories. Show that Free and Forget are adjoint monoidal functors. (Note that the main work here is writing down a definition for adjoint monoidal functors, and verifying that this gives an example.)

(b) Now consider *pointed* sets Set_* and $\mathsf{Free}_*(X) = \mathbb{Z}X/\mathbb{Z}x_0$ where $\mathsf{Free}(X) = \mathbb{Z}X$ and $x_0 \in X$ is the basepoint. If $\mathsf{Forget}_*(G)$ is the pointed set with basepoint the identity, show that the appropriate product of pointed sets is given by

$$X \wedge Y = \frac{X \times Y}{(X \times \{y_0\} \cup \{x_0\} \times Y)}$$

and verify the associated adjunction of monoidal functors.