Math 427/527: algebraic topology

Homework problem for Lecture 7.

Let Γ be a cyclic group of order 2 and consider the group ring $\mathbb{Z} \Gamma$. Consider the chain complex given by $C_{i}=\mathbb{Z} \Gamma$, for $i \geq 0$, and

$$
d_{i}(\gamma)= \begin{cases}(1+x) \cdot \gamma & \text { for } i \text { even } \\ (1-x) \cdot \gamma & \text { for } i \text { odd }\end{cases}
$$

where x is a generator for Γ.
(a) A chain complex is called acyclic if the homology vanishes in all degrees above 0 . Prove that C_{*} is acyclic.
(b) Find an augmentation for C_{*} so that $H_{0}\left(C_{*}\right)$ vanishes.

