Math 308: Introduction to tilings Assignment 4, due Friday November 10 by 11:59 pm.

1. Let \mathcal{T} be a tiling by polygons, and let T be a tile of \mathcal{T} . Prove that if T has a corner that is not a vertex in \mathcal{T} then \mathcal{T} is not a proper tiling.

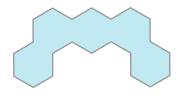
2. Consider a 4-gon with angles $\{\alpha, \beta, \frac{\pi}{2}, \frac{\pi}{2}\}$ such that $\alpha + \beta = \pi$ and $\alpha \neq \beta$; this is the tile *T*. Showing all your work, construct a tiling of type $\mathbf{P_4}$ -**N** for some **N** having prototile *T*. **Note:** Your solution can fix particular values of α and β if you find that helpful.

3. Showing all your work, prove that any two of the following four polygonal isohedral types of tilings by triangles are distinct: P_3-10 , P_3-11 , P_3-12 , P_3-13

4. Given a tiling \mathcal{T} write $T \simeq T'$ for tiles $T, T' \in \mathcal{T}$ whenever T' = tT for some translation $t \in S(\mathcal{T})$.

(a) Verify that \approx is an equivalence relation on tiles.

The equivalence classes under \approx are called the *aspects* of a tile. Consider the 5-hexe prototile T shown (assume each of the 5 hexagons constructing this prototile are congruent and regular):



- (b) Show that T admits no isohedral tiling with n aspects, where n = 1, 2, 3.
- (c) Determine all isohedral tilings with with prototile T.