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Abstract. This paper gives a geometric interpretation of bordered Heegaard Floer homology

for manifolds with torus boundary. If M is such a manifold, we show that the type D structure

ĈFD(M) may be viewed as a set of immersed curves decorated with local systems in ∂M . These

curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of

the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism
h between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by

gluing with h is obtained from the Lagrangian intersection Floer homology of the curve-sets. This

machinery has several applications: We establish that the dimension of ĤF decreases under a

certain class of degree one maps (pinches) and we establish that the existence of an essential

separating torus gives rise to a lower bound on the dimension of ĤF . In particular, it follows that

a prime rational homology sphere Y with ĤF (Y ) < 5 must be geometric. Other results include

a new proof of Eftekhary’s theorem that L-space homology spheres are atoroidal; a complete
characterisation of toroidal L-spaces in terms of gluing data; and a proof of a conjecture of Hom,

Lidman, and Vafaee on satellite L-space knots.

1. Introduction

Bordered Floer homology is a suite of invariants, introduced by Lipshitz, Ozsváth and Thurston [39],
assigned to three-manifolds with boundary. These invariants are particularly well-adapted to cut-
and-paste techniques. In the case of manifold with torus boundary, this theory has been developed
in various ways yielding effective combinatorial tools for studying certain classes of toroidal three-
manifolds [10, 20, 19, 21, 23, 24, 35]. The goal of this paper is to provide a geometric interpretation
of bordered Floer homology for manifolds with torus boundary in terms of one-dimensional objects
in the boundary of the manifold.

1.1. Bordered invariants as immersed curves. IfM is a closed orientable 3-manifold with torus
boundary, we define TM to be the complement of 0 in H1(∂M ;R)/H1(∂M ;Z). The punctured torus
TM can be identified with the complement of a point z in ∂M , and this identification is well-defined
up to isotopy.

In order to define the bordered invariant ĈFD(M,α, β), we must choose a parametrization (α, β) of
∂M . That is, α and β are the cores of the 1-handles in a handle decomposition of ∂M . Starting from

ĈFD(M,α, β) we will define a collection γ = {γ1, . . . , γn} of immersed closed curves γi : S1 ↬ TM ,
each decorated with a local system (Vi,Φi) consisting of a finite dimensional vector space over

F = Z/2Z and an automorphism Φi : Vi → Vi; we denote this data by ĤF (M).
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Theorem 1.1. The collection of decorated curves ĤF (M) is a well defined invariant of M , up to

regular homotopy of curves and isomorphism of local systems. In particular, ĤF (M) does not depend
on the choice of parametrization (α, β).

This data is equivalent to bordered Floer homology: ĤF (M) is determined by ĈFD(M,α, β) and,

for any choice of parametrization (α, β), ĈFD(M,α, β) can be recovered from ĤF (M).

Now suppose thatM0 andM1 are manifolds as above, and that Y =M0∪hM1 is the closed manifold
obtained by gluing them together by the orientation reversing homeomorphism h : ∂M1 → ∂M0.

The Heegaard Floer homology ĤF (Y ) can be recovered from γ0 = ĤF (M0) and γ1 = h̄(ĤF (M1)),
where the homeomorphism h̄ is the composition of h with the elliptic involution on ∂M0. (In fact,

the invariant ĤF (M) is fixed by the elliptic involution on ∂M ; this symmetry is established in the
companion to this paper [22]. Thus h̄ can be replaced by h in the definition of γ1.)

Theorem 1.2. For Y =M0 ∪hM1 as above,

ĤF (Y ) ∼= HF (γ0,γ1)

where HF (·, ·) is an appropriately defined version of the Lagrangian intersection Floer homology in
TM0

.

1.2. Trivial local systems. In order to illustrate the content of Theorem 1.1 and Theorem 1.2, it
is instructive to consider the case where the local systems are trivial. In this case the associated
vector spaces are 1-dimensional and can be dropped from the notation; the resulting invariants are

simply (systems of) immersed curves. As a very simple example, the invariant ĤF (D2 × S1) consists
of a single closed circle parallel to the longitude λ = ∂D2 × {pt}.

z

Figure 1. The marked exterior of the figure
eight knot, together with its bordered invariant

as a pair of immersed curves.

A more interesting example is illustrated in Figure 1: The
invariant associated with the complement of the figure

eight knot has two components. When ĤF (M) is more
complicated, it is generally easier to represent it by draw-

ing some curves in the cover T̃M = H1(M ;R)\H1(M ;Z) ∼=
R2 \ Z2 whose image in TM is ĤF (M). From this point
of view, the effect of orientation reversal on bordered in-
variants corresponds to reflection in the line determined
by the longitude. Figure 2 shows the invariant associated
with the right-hand trefoil. We note that, in this context,
calculation is extremely efficient:

Corollary 1.3. In the case of trivial local systems, fol-
lowing the notation of Theorem 1.2, if no two components

of γ0 and γ1 are parallel then dim ĤF (Y ) is the minimal
geometric intersection number between γ0 and γ1.

Figure 2. A curve for the right-hand trefoil:

the horizontal direction corresponds to the pre-
ferred longitude λ, and the vertical direction to

the standard meridian of the knot.

For example, let Y1 be the manifold obtained by splic-
ing the complements of the left-hand trefoil KL and the
right-hand trefoil KR; that is by takingM0 = S3 \ν(KL),
M1 = S3\ν(KR), and h : ∂M0 → ∂M1 such that h(µ) = λ
and h(λ) = µ, where µ and λ are the preferred meridian
and longitude of each trefoil in S3. Similarly, let Y2 be
the manifold obtained by splicing two copies of the com-
plement of the right-hand trefoil. Consulting Figure 3,

we see that ĤF (Y1) has dimension 9, while ĤF (Y2) has
dimension 7, as calculated by Hedden and Levine [24].
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Figure 3. Splicing trefoils: The diagram on the left illustrates the intersection (carried out in

T̃M ) calculating dim ĤF (Y1) = 9 where Y1 is the splice of a right-hand and left-hand trefoil, while

the diagram on the right illustrates the intersection calculating dim ĤF (Y2) = 7 where Y2 is the
splice of two right-hand trefoils.

Manifolds for which the local systems are trivial are precisely the loop-type manifolds introduced
by the first and third author [23]; the graphical formalism can thus be viewed as a geometric
representation of the loop calculus. We remark that no explicit examples of three-manifolds are
known for which the associated bordered invariant gives rise to a non-trivial local system. In
practice—for instance for the gluing theorem needed in [21]—it is often enough to restrict attention
to loop-type manifolds. As such, this class of manifolds seems interesting in its own right, and is
discussed in further detail in a companion article [22].

1.3. Train tracks and a structure theorem. We now discuss the ideas behind the proof of

Theorem 1.1. IfM is as in the statement of the theorem, the bordered Floer homology ĈFD(M,α, β)
is a type D structure (in the sense of Lipshitz, Ozsváth, and Thurston [39]) over an algebra A,
known as the torus algebra. In this case, a type D structure over A is simply a chain complex over
A satisfying certain conditions. These are equivalent to projective differential modules over A; see
[39, Remark 2.25].

In this paper, we will restrict attention to a certain class of type D structures over A, which we
call extendable. The precise definition is given in section 3.1 but, briefly put, an extended type D

structure is a curved differential module over a certain algebra Ã that has A as a quotient; these
have certain properties in common with matrix factorizations. A type D structure N is extendable

if there is an extended type D structure Ñ such that N ∼= A⊗Ã Ñ . The following theorem, which
is essentially due to Lipshitz, Ozsváth and Thurston [39, Chapter 11], shows that this is not much
of a restriction.

Theorem 1.4. If M is a compact oriented manifold with torus boundary, ĈFD(M,α, β) is extend-
able.

We introduce a new graphical calculus, based on immersed train tracks in the punctured torus,
which describes extended type D structures. The graphical calculus provides an effective practical
method for reducing a given extended type D structure to a collection of curves decorated with local
systems. Using it, we prove the following structure theorem:

Theorem 1.5. Every extendable type D structure over A can be represented by a collection of
immersed curves in the punctured torus, decorated with local systems.

The class of extendable type D structures known to arise as ĈFD(M,α, β) for some three-manifold
M is considerably smaller than the set of all extendable type D structures. Indeed, as mentioned

above, we do not have any explicit examples of a manifoldM for which ĤF (M) has a non-trivial local
system (though we expect that such M should exist). Even in the case of trivial local systems there
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are curve sets that do not correspond to three-manifold invariants. For instance, Proposition 7.13
shows that certain configurations of loose curves (introduced in Section 7.2) do not arise as invariants
of three-manifolds. This improves on a result due to Gillespie [15], and should be compared with
work of Alishahi and Lipshitz [2].

1.4. Relation with the Fukaya category. Theorem 1.1 can be interpreted as saying that if M

is a manifold with torus boundary then ĤF (M) is a compactly supported element of the Fukaya
category F(TM ), while Theorem 1.2 says that the Floer homology of a closed manifold Y =M0∪hM1

is given by the Hom pairing in the Fukaya category:

ĤF (Y ) = Hom
(
ĤF (M0), h̄(ĤF (M1))

)
The connection between the Heegaard Floer theory and the Fukaya category dates back to the
introduction of Heegaard Floer homology, whose definition was motivated by a Seiberg-Witten analog
of the Atiyah-Floer conjecture [42]. Following the introduction of bordered Floer homology [37, 39],
Auroux [3, 4] and Lekili and Perutz [34] suggested that the Floer homology of a compact orientedM
with ∂M = Σg should be an object in F(Symg(Σg \ z)). In particular, Auroux showed that if P is
a parametrization of ∂M (in other words, an identification of ∂M with a specific genus g surface F

equipped with a handle body decomposition), the bordered Floer homology ĈFA(M,P) defines an
object L(M,P) in the partially wrapped Fukaya category F(Symg(F \ z)), and that the pairing in
bordered Floer homology is given by the Hom pairing. However it is unclear from this construction
whether L(M,P) should be compactly supported.

Auroux’s construction is conceptually very useful, but for general g we don’t have any way of making
calculations in F(Symg(F \ z)) other than the one provided by bordered Floer homology. The one
obvious exception is the case g = 1 where, naively, one might expect that objects in F(T 2 \ z) are
given by curves in the punctured torus. In fact, the situation is somewhat more complicated. The
Fukaya category is triangulated, so a typical object actually has the form of an iterated mapping
cone built out of geometric curves. In [18], Haiden, Katzarkov and Kontsevich give an especially
nice algebraic model for the partially wrapped Fukaya category of a punctured surface Σ; in the case
of T 2 \ z, objects of F(T 2 \ z) correspond to chain complexes over the algebra A or, equivalently,
with type D structures.

One of the main results of [18] is a structure theorem for objects of F(Σ), which says that any
object can be expressed as a direct sum of immersed, possibly noncompact curves. Theorem 1.5
was motivated by this result but our proof is quite different. In particular, the condition that
the type D structure is extendable implies that the curves are all compactly supported. More
generally, if Σ is a punctured surface with stops on each boundary component, objects of F(Σ)
correspond to type D structures over an appropriate algebra. Our proof of Theorem 1.5 generalizes
to show that if the type D structure is extendable, it is isomorphic to a disjoint union of compactly
supported curves equipped with local systems. This gives a new proof of the structure theorem
of Haiden, Katzarkov, and Kontsevich in the compactly supported case (see Theorem 3.17), which
is constructive and stays internal to the language of bordered Floer homology (namely, type D
structures). This constructive approach has a key advantage: we obtain new information about
Heegaard Floer theory and applications to 3-manifolds, as described below.

1.5. Gradings. There is a refined version of the invariant that takes spinc structures and the ab-
solute Z/2Z grading on Heegaard Floer homology into account.

Definition 1.6. If M is as in Theorem 1.1, let TM be the covering space of TM whose fundamental
group is the kernel of the composition

π1(TM ) → π1(∂M) → H1(∂M) → H1(M)
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Equivalently, if λ ∈ H1(∂M ;Z) generates the kernel of the inclusion j∗ : H1(∂M ;Z) → H1(M ;Z)
TM is homeomorphic to the quotient ((H1(∂M ;R) \H1(∂M ;Z)))/⟨λ⟩. We let p : TM → TM be the
covering map.

The set of spinc structures on M can be identified with H2(M) ≃ H1(M,∂M) ≃ coker j∗. We have:

Theorem 1.7. For each s ∈ Spinc(M) there is an invariant ĤF (M, s), which is a collection of

oriented immersed closed curves equipped with local systems in TM . Moreover, ĤF (M, s) is well-
defined up to the action of translation by the deck group of p, and

ĤF (M) =
⋃

s∈Spinc(M)

p(ĤF (M, s)).

There is an analog of Theorem 1.2 recovering the spinc decomposition of ĤF (M0 ∪h M1) from

ĤF (M0, s0) and ĤF (M1, s1), where si runs over spin
c structures on Mi. (See Proposition 6.7 for a

precise statement.) The Z/2Z grading on ĤF (M0∪hM1) is determined by the sign of the intersections

between the oriented curves ĤF (M0) and ĤF (M1).

1.6. Immediate consequences. The geometric interpretation of bordered Floer invariants de-
scribed above has several applications. For instance:

Theorem 1.8. Let Y be a closed, orientable three-manifold. If Y contains a separating essential

torus then dim ĤF (Y ) ≥ 5.

This follows quickly from Theorem 1.2. Indeed, a simple geometric argument shows that any two
sufficiently non-trivial immersed curves in the punctured torus intersect in at least 5 points (a specific

example realizing dim ĤF (Y ) = 5 is illustrated in Figure 60; see also Theorem 7.20). Theorem 1.8
gives rise to an interesting geometric statement:

Corollary 1.9. If Y is a prime rational homology sphere with dim ĤF (Y ) < 5 then Y is geometric.

Proof. Note that any essential torus in a rational homology sphere must be separating. Thus, if

dim ĤF (Y ) < 5 then Y is atoroidal and we may appeal to Perelman’s resolution of Thurston’s
geometrization conjecture to conclude that Y admits a geometric structure. □

Note that, more precisely, the geometric structure in question is either hyperbolic or it is one of 6
Seifert fibered geometries; see Scott [48], for example. As another immediate corollary of Theorem
1.8, we obtain a new proof of a theorem of Eftekhary [12]:

Corollary 1.10. L-space integer homology spheres are atoroidal. □

Recall that an L-space is a rational homology sphere for which dim ĤF (Y ) = |H1(Y )|. Corollary
1.10 is a part of a conjecture of Ozsváth and Szabó; it implies that prime integer homology sphere
L-spaces with infinite fundamental group—should examples exist—are hyperbolic.

We also obtain a statement about Khovanov homology.

Corollary 1.11. If L is a link in S3 containing an essential Conway sphere then dim K̃h(L) ≥ 5.

Proof. Denoting by ΣL the two-fold branched cover of S3, branched along the link L, the presence
of an essential Conway sphere in L is equivalent to the existence of an essential separating torus in

ΣL. Thus dim K̃h(L) ≥ ĤF (ΣL) ≥ 5, where the first inequality arises from the spectral sequence
from the reduced Khovanov homology of (the mirror of) L to Heegaard Floer homology [44] and the
second applies Theorem 1.8. □
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It is worth comparing this result with the fact that the unknot [33] and the two trefoils [7] are
characterized by their Khovanov homology. For statements about links, see [25, 26].

In another direction, we can establish strong behaviour for Heegaard Floer homology in the presence
of certain degree one maps. Consider an integer homology sphere Y containing an essential torus,
and write Y =M0 ∪hM1 where the Mi are (necessarily) integer homology solid tori. Following our
conventions above, h(λ) must be a meridian in ∂M0 when λ is the longitude ofM1. The Dehn filling
Y0 =M0(h(λ)) is the result of replacing M1 with a solid torus (called a pinch); there is a degree one
map Y → Y0.

Theorem 1.12. If Y is a toroidal integer homology sphere and Y0 is the result of a pinch on Y

then dim ĤF (Y ) ≥ dim ĤF (Y0).

This follows from a more general statement about pinching along tori in rational homology spheres;
see Theorem 7.15. In particular, to the best of the authors’ knowledge, this is the only result
concretely treating the following:

Question 1.13. If Y → Y0 is a degree one map between closed, connected, orientable three-

manifolds, is it the case that dim ĤF (Y ) ≥ dim ĤF (Y0)?

1.7. The L-space gluing theorem. The geometric invariants defined in this paper can also be
applied to the classification of L-spaces; in particular, we give a complete characterization of when
gluing along a torus produces an L-space. Again, an L-space is a rational homology sphere Y for

which dim ĤF (Y ) = |H1(Y )|. For a manifold with torus boundary M , the set of L-space slopes of
M is given by

LM = {α |M(α) is an L-space} ⊂ QP 1

where M(α) denotes Dehn filling along the slope α. Denote the interior of LM by L◦
M .

The set LM is encoded by and easily extracted from the invariant ĤF (M). In particular, a necessary
condition for |LM | > 1 is that the associated local system be trivial. The complement of LM is

obtained by considering the minimal set of tangent lines to ĤF (M); see Theorem 7.17 for a precise
statement. This provides a satisfying solution to a problem posed by Boyer and Clay [9, Problem
1.9]. Toroidal L-spaces are then characterized as follows.

Theorem 1.14. Let Y =M0∪hM1 be a 3-manifold whereMi are boundary incompressible manifolds
and h : ∂M1 → ∂M0 is an orientation reversing homeomorphism between torus boundaries. Then
Y is an L-space if and only if L◦

M0
∪ h(L◦

M1
) = QP 1.

This confirms a conjecture due to the first author [20], and strengthens results in [19, 21, 23, 24, 46].
In addition to the applications discussed below, the L-space gluing theorem plays a key role in the
program to understand L-spaces arising as cyclic branched covers of knots in the three-sphere; see
Gordon and Lidman [16, 17] and Boileau, Boyer, and Gordon [8]. A weaker version of the L-space
gluing theorem was the key ingredient, along with work of Boyer and Clay [9], in proving the L-space
conjecture for graph manifolds [21] (an alternate, constructive, proof is given in [47]). We note that,
in light of the L-space conjecture [10], the L-space gluing theorem makes some striking predictions
about the behaviour of foliations on manifolds with torus boundary, as well as the behaviour of
left-orders on the fundamental groups of these manifolds. Another notable application is given in
the work of Némethi on links of rational singularities [41].

Theorem 1.14 allows us to refine Theorem 1.8 in the case that Y is a toroidal L-space. In addition to
ruling out |H1(Y )| ≤ 4, we can easily enumerate all examples with |H1(Y )| < 7; see Theorem 7.20.
Note that this leads to another proof of Corollary 1.10. Another quick consequence of Theorem 1.14
is the following:
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Theorem 1.15. Suppose that K is a satellite knot in S3. If K is an L-space knot (that is, K admits
non-trivial L-space surgeries) then both the pattern knot and the companion knot are L-space knots
as well.

This confirms a conjecture of Hom, Lidman, and Vafaee [28, Conjecture 1.7]. It has subsequently
been used by Baker and Motegi [6] to show that the pattern knot must be a braid in the solid torus
(see also Hom [27]).

Organization. This paper is a substantially revised version of our earlier preprint of the same name,
which dealt only with loop-type manifolds. A subsequent paper [22] will discuss further properties
of the invariant and give some examples. The current paper is laid out as follows.

Section 2 summarizes the relevant background from bordered Floer homology (in the case of man-
ifolds with torus boundary) and describes a geometric representation for these invariants in terms
of immersed train tracks. The main new content in this section is a graphical interpretation of the

box tensor product—the chain complex ĈFA(M0, α0, β0) ⊠ ĈFD(M1, α1, β1)—in terms of intersec-
tion between train tracks; see Theorem 2.2. For train tracks that are immersed curves, this has a
clear connection to Lagrangian intersection Floer theory. In general, however, the naive intersection
of train tracks is not an invariant in any sense. Extracting invariants is the principal aim of the
remaining sections.

Section 3 is devoted to algebraic issues concerning a well-behaved class of type D structures: we prove
a structure theorem (Theorem 1.5) for extendable type D structures in two steps. We first reduce
train tracks in this class to train tracks satisfying certain nice properties (Section 3.3, particularly
Proposition 3.8), and then show that such train tracks can be manipulated and ultimately interpreted
in terms of immersed curves and local systems (Section 3.6, particularly Proposition 3.13). Indeed,
the class of train tracks considered ultimately gives a geometric interpretation of the relevant local
systems. The section concludes with Theorem 3.17, which extends our techniques to surfaces of
higher genus.

Section 4 establishes the equivalence between, and independence of choices made in the construction
of, extendable type D structures and immersed curved with local systems. We note that, while only
the existence of an extension is required for our purposes, it follows from the work in this section
that extendable type D structures have essentially unique extensions; see Proposition 4.16.

Section 5 returns the focus to three-manifolds, completing the proof of Theorem 1.1 and Theorem
1.2, while Section 6 explains the modifications to the invariant needed to recover the spinc and Z/2Z
gradings on ĤF , as described in Theorem 1.7.

Section 7 is devoted to the applications described above, and the paper concludes with a short
Appendix containing the proof of Theorem 1.4.

Conventions and coefficients. All three-manifolds arising in this work are compact, connected,
smooth, and orientable. Consistent with the set-up in bordered Floer homology [39], all Floer
invariants in this work take coefficients in the two element field F. We expect that the results we
describe here should work over other fields (and perhaps over Z as well) but setting it up would
require defining the bordered Floer homology of a manifold with torus boundary over Z. Unless
explicitly stated otherwise, (singular) homology groups of manifolds should be assumed to take
coefficients in Z.

Acknowledgements. The authors would like to thank Peter Kronheimer, Yankı Lekili, Tye Lid-
man, Robert Lipshitz, Gabriel Paternain, Sarah Rasmussen, Ivan Smith, and Claudius Zibrowius for
helpful discussions (some of them dating back a very long time). In addition, we would like to thank
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of key points. Part of this work was carried out while the third author was visiting Montréal as CIR-
GET research fellow, and part was carried out while the second and third authors were participants
in the program Homology Theories in Low Dimensions at the Isaac Newton Institute.

2. Bordered invariants as train tracks

This section gives a geometric interpretation of bordered invariants in terms of immersed train
tracks for manifolds with torus boundary. We begin with a brief review of the relevant notions from
bordered Floer homology [39]. A less terse introduction, with essentially the same notation used
here, is given in [23].

2.1. Modules over the torus algebra. Let M be an orientable three-manifold with torus bound-
ary, and choose oriented essential simple closed curves α, β in ∂M with β ·α = 1. The ordered triple
(M,α, β) is called a bordered three-manifold; the pair (α, β) may be regarded as a parametrization
of the torus boundary, in the sense that ⟨α, β⟩ specifies the peripheral subgroup π1(∂M).

ι0 ι1

ρ1

ρ2

ρ3

Figure 4. A quiver for the torus
algebra, with relations ρ2ρ1 =

ρ3ρ2 = 0.

We focus on two (equivalent) bordered invariants assigned to a bor-
dered manifold (M,α, β). These will take the form of certain mod-
ules over the torus algebra A. Various descriptions of this alge-
bra are given by Lipshitz, Ozsváth and Thurston [39], but for our
purposes, recall that A is generated, as an algebra over the two-
element field F, by elements ρ1, ρ2 and ρ3 and idempotents ι0 and
ι1. Multiplication in A is described by the quiver depicted in Fig-
ure 4 together with the relations ρ2ρ1 = ρ3ρ2 = 0. The shorthand
ρ12 = ρ1ρ2, ρ23 = ρ2ρ3, ρ123 = ρ1ρ2ρ3 is standard. Let I denote
the subring of idempotents, and write 1 = ι0 + ι1 for the unit in A.

The relevant bordered invariants are ĈFA(M,α, β) and ĈFD(M,α, β); both are invariants of the
underlying bordered manifold up to homotopy [39]. The former is a type A structure, that is, a right
A∞-module over A. The latter is a type D structure, which consists of (1) a vector space V (over F)
together with a splitting as a direct sum over a left action of the idempotents V ∼= ι0V ⊕ ι1V ; and
(2) a map δ1 : V → A⊗I V satisfying a compatibility condition ensuring that ∂(a⊗x) = a ·δ(x) is a
differential on A⊗I V (with left A-action specified by a · (b⊗x) = ab⊗x). In particular, A⊗I V has
the structure of a left differential module over A. We will sometimes confuse the type D structure

ĈFD(M,α, β) (consisting of V and δ1) and this associated differential module. Given any type D
structure there is a collection of recursively defined maps δk : V → A⊗k ⊗ V where δ0 : V → V is

the identity and δk = (idA⊗k−1 ⊗δ1) ◦ δk−1. The type D structure ĈFD(M,α, β) is bounded if δk

vanishes for all sufficiently large integers k.

Given a bordered manifold (M,α, β) the associated type A and type D structures are related.

In particular, according to [38, Corollary 1.1], ĈFA(M,α, β) is dual (in an appropriate sense) to

ĈFD(M,α, β). However, the utility of the two structures, taken together, is a computable model for
the A∞ tensor product: Given bordered manifolds (M0, α0, β0) and (M1, α1, β1) consider the chain

complex ĈFA(M0, α0, β0) ⊠ ĈFD(M1, α1, β1) obtained from ĈFA(M0, α0, β0) ⊗I ĈFD(M1, α1, β1)
with differential defined by

∂⊠(x⊗ y) =

∞∑
k=0

(mk+1 ⊗ id)(x⊗ δk(y))

and the requirement that ĈFD(M1, α1, β1) is bounded (this ensures that the above sum is fi-
nite). Then the pairing theorem of Lipshitz, Ozsváth and Thurston asserts that the homology of
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ĈFA(M0, α0, β0)⊠ ĈFD(M1, α1, β1) is isomorphic to the Heegaard Floer homology ĤF (M0 ∪hM1)
of the closed manifold obtained from the homeomorphism h : ∂M1 → ∂M0 specified by h(α1) = β0
and h(β1) = α0 [39, Theorem 1.3].

2.2. Conventions for bordered manifolds. In the framework given by Lipshitz, Ozsváth and
Thurston [39], the boundary parametrization of M is recorded by specifying a diffeomorphism
ϕ : F → ∂M where F is a torus with a fixed handle decomposition. The image of the cores of
the one-handles in F correspond to the pair of α-arcs (αa1 , α

a
2) in a bordered Heegaard diagram;

completing this pair to curves in ∂M gives a pair corresponding to our parametrizing curves α and
β. To relate the two notations, we must specify which curve corresponds to each α-arc in a bordered
Heegaard diagram. We orient the arcs αa1 and αa2 so that, starting at the basepoint and following the
boundary of the Heegaard surface, we pass the initial point of αa1 , the initial point of αa2 , the final
point of αa1 , and the final point of αa2 . With this labelling, α in our notation corresponds to −αa1
and β corresponds to αa2 . Note that when gluing two bordered manifolds together by an orientation
reversing diffeomorphism taking basepoint to basepoint, αa1 must glue to −αa2 and αa2 must glue
to −αa1 ; thus in our notation, α glues to β and β glues to α. Finally, the arcs defined above in a
Heegaard diagram seem to satisfy (−α1) · α2 = 1, which would imply that α · β = 1. However, the
orientation of the Heegaard surface agrees with the opposite of the orientation on ∂M . Said another
way, the surface in a bordered Heegaard diagram for M should be interpreted as being viewed from
inside M , but we will generally look at ∂M from outside M so that β · α = 1.

2.3. Decorated graphs. There is a convenient graph-theoretic shorthand for describing these bor-
dered invariants (see, for instance, [23, 24]). Let Γ be a directed graph with vertex set VΓ and edge
set EΓ. Suppose that every v ∈ VΓ is labelled with exactly one element from {•, ◦} and every e ∈ EΓ is
labelled with exactly one element from {∅, 1, 2, 3, 12, 23, 123}. Moreover, suppose the edge labels are

compatible with the vertex labels so that the only arrangements that occur are ∅• • , ∅◦ ◦ ,

1• ◦ , 2◦ • , 3• ◦ , 12• • , 23◦ ◦ , and 123• ◦ . Finally, we will require that for

any pair of vertices v1 and v2 in a decorated graph and any element I ∈ {∅, 1, 2, 3, 12, 23, 123}, there
is an even number of length two directed paths from v1 to v2 for which the concatenation of the two
edge labels is I. We will call a graph of this form an A-decorated graph.

•

◦
•

◦

•

◦
◦

123

1

3

2

1

23

3

Figure 5. A decorated graph.

An A-decorated graph Γ describes a type D structure over A as
follows. The underlying vector space is generated by VΓ, with
the idempotent splitting specified by • labels identifying the ι0
generators and ◦ labels identifying the ι1 generators. The map
δ1 is determined by the edge labels: Given e ∈ EΓ with label
I ∈ {∅, 1, 2, 3, 12, 23, 123} consider the source x and target y in VΓ.
Then ρI ⊗ y is a summand of δ1(x), with the interpretation that
ρ∅ = 1. A decorated graph (and its associated type D structure) is
reduced if none of the edges is labelled by ∅. An example is shown

in Figure 5, describing the bordered invariant ĈFD(M,µ, λ) when
M is the complement of the right-hand trefoil, µ is the knot merid-
ian and λ is the Seifert longitude (see [39]). Notice that the higher δk are determined by directed
paths in Γ; for the example shown, there exist generators x and y such that δ3(x) = ρ3⊗ ρ2⊗ ρ1⊗ y
corresponding to the unique directed path of length 3. Clearly, the associated type D structure is
bounded if and only if the decorated graph contains no directed cycles. Note that the assumption
that length two paths cancel mod 2 implies that ∂2 = 0 in the corresponding differential module.
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•

◦
•

◦

•

◦
◦

321

3

1

2

3

21

1

Figure 6. Relabelling by 1 ↔ 3,

2 ↔ 2, 3 ↔ 1 to extract a type A
structure from a decorated graph.

In the reduced case, the duality between type D and type A struc-
tures is encoded in the A-decorated graphs following an algorithm
described by Hedden and Levine [24]. This takes the same inter-
pretation for the underlying vector space (that is, the idempotent
splitting according to vertex labels) but requires a different inter-
pretation of the edge labels. First, one re-writes/re-interprets the
edge labels according to the bijection 1 ↔ 3 , 2 ↔ 2, 3 ↔ 1. Next,
given any length n directed path in Γ with source vertex x and
target vertex y we construct a sequence I = I1, . . . , Ik and assign
a multiplication mk+1(x ⊗ ρI1 ⊗ · · · ⊗ ρIk) = y. The sequence I is
constructed by forming a word in {1, 2, 3} determined according to
the labels of the directed edge read in order, and then regrouping to
find the minimum k such that each Ij (for 1 ≤ j ≤ k) is an element
of {1, 2, 3, 12, 23, 123}. Thus, in our example, to the length 3 directed path we assign the label
sequence I = {123} so that m2(x, ρ123) = y while the edge label 321 (formerly 123 in the original
decorated graph) gives rise to a sequence I = {3, 2, 1} and the product m4(x

′, ρ3, ρ2, ρ1) = y′.

2.4. Train tracks. Given a reduced A-decorated graph Γ as in the previous section, we can immerse
Γ in the torus, as described below. First, we fix a specific model for the punctured torus.

Definition 2.1. Themarked torus T is the oriented surface T = R2/Z2 punctured at z = (1−ϵ, 1−ϵ).
The images of the y and x-axes in T will be referred to as α and β respectively.

We embed the vertices of Γ into T so that the vertices corresponding to V0 = ι0V generators (the
• vertices) are distinct points on α and the vertices corresponding to V1 = ι1V generators (the ◦
vertices) are distinct points on β. We then embed each edge in T according to its label, as shown in
Figure 8. While each edge is embedded, different edges may intersect so the result is an immersion
of Γ. We will denote the image of this immersion by ϑΓ. Note that the order in which vertices are
embedded along α and β is arbitrary, and the arcs in Figure 8 may be replaced by any homotopic
path, so ϑΓ is defined up to regular homotopy. A concrete example is shown in Figure 9.

z z z z z z

1 2 3 12 23 123

Figure 7. Assigning edges in a reduced decorated graph Γ to directed edges in the marked torus
T . Notice that, by labelling corners of the (bordered) marked torus clockwise from the base point,

the labels and orientations on edges may be suppressed without ambiguity.

.

We require that (1) all intersections between edges are transverse and away from the parametrizing
curves α and β and (2) near a vertex, all edges are orthogonal to the curve (α or β) that the vertex
lies on. This gives ϑΓ the structure of an immersed train track (following Thurston’s notion of a
train track in a surface, see for example [40]). An immersed train track is an immersed graph for
which all edges incident at a vertex share a common tangent line. Following the usual terminology
(inspired by railroad junctions), the vertices of an immersed train track are referred to as switches.
An important point is that, just as Γ need not be connected as a graph, the immersed train track
ϑΓ, constituting equivalent data, may consist of a union of a collection of immersed train tracks.

A train track ϑΓ constructed as above has a very particular form; for instance, it has no switches that
are not on α or β. We will later have need to work with a more general class of immersed train tracks
in T (see Definition 3.2), and we will call ϑΓ as constructed here a naive train track representing Γ.
We remark that the edge orientations may be dropped from ϑΓ without losing information, since
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they are determined by the rule that the basepoint lies on the right side of each arc, and thus ϑΓ

may be viewed as an unoriented train track. However, orientations will be meaningful for more
general train tracks and we find it convenient to record them even in this case.

•

◦

•◦

•

◦

◦

•

• ◦

•
1

12

1

23

1

3

123
2

1

23

3

12
1

3

12

d

j

a
k

f

g

h

c

e
i

b

a

b

c

d

e

f

a

b

c

d

e

f

ghijk

ghijk

z

Figure 8. The train track ϑΓ (right) associated with the A-decorated graph Γ shown on the left.
All train track switches occur at the vertices on the α and β curves; intersection points between

edges of the graph are not (new) vertices of the graph. Note that the type D structure described

is not known to come from a three-manifold.

There is an interesting special case in which ϑΓ (ignoring edge orientations) is simply a collection
of immersed curves in T . This corresponds to the case when Γ is a valence 2 graph and satisfies
an extendability condition ensuring that the two arcs out of the switch of ϑΓ associated with a
given vertex leave the switch in opposite directions. The extendibility condition always holds for

ĈFD(M,α, β) (see Theorem 1.4); in the case where ĈFD(M,α, β) admits a representative that may
be described by a valence 2 decorated graph, M is called loop-type; compare [23]. As an example,
the trefoil exterior is loop-type; see Figure 5. It is a surprising fact that a great many classes of
manifolds with torus boundary are loop-type, including any manifold admitting multiple L-space
fillings [21, 46]; this class of manifolds is considered in detail in a companion paper [22]. Indeed, we
have no explicit example of a manifold that is not loop-type.

2.5. Pairing train tracks. Just as an A-decorated graph encodes both a type D structure and a
type A structure overA, we now establish our conventions for train tracks with respect to this duality.
Let ϑ be a train track that is a naive train track representing some reduced A-decorated graph. Fix a
standard marked torus T and divide it into four quadrants. The type A realization A(ϑ) is obtained
by including ϑ (cut along α and β) into the first quadrant and adding unoriented horizontal edges
in the second quadrant and unoriented vertical edges in the fourth quadrant connecting the two
resulting copies of each switch; see Figure 10. Similarly, the type D realization D(ϑ) is obtained
by reflecting ϑ across the anti-diagonal y = −x, including into the third quadrant, and adding
unoriented vertical (resp. horizontal) edges in the second (resp. fourth) quadrant. In other words,
D(ϑ) is the reflection of A(ϑ) across y = −x. We will refer to the edges of A(ϑ) or D(ϑ) in the first
or third quadrants as corners, since these are where paths carried by the train tracks can change
direction, and the edges in the second and fourth quadrant are horizontal edges or vertical edges.

Now consider a pair of naive train tracks ϑ0 and ϑ1. We define C(ϑ0,ϑ1) to be the vector space
over F generated by the intersection points between A(ϑ0) and D(ϑ1). Note that these intersection
points are confined to the second and fourth quadrants in T , by construction. We will define a linear
map dϑ : C(ϑ0,ϑ1) → C(ϑ0,ϑ1) by counting bigons.
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z z z z

Figure 9. From left to right: a sample train track ϑ, its type A realization A(ϑ), its type D

realization D(ϑ), and the pairing complex C(ϑ,ϑ) between the two. The 5 bigons contributing to
the map dϑ in this case have been shaded.

If x and y are two intersection points between A(ϑ0) and D(ϑ1), we consider the set of continuous
maps u : D2 → T satisfying the following conditions (compare with [1, Definition 2.8]):

• u is an orientation-preserving immersion away from −i and i;
• u(−i) = x and u(i) = y (viewing D2 as the unit disk in C);
• u maps the positive real part of ∂D2 (oriented from −i to i) to an oriented path in A(ϑ0);
• u maps the negative real part of ∂D2 (oriented from −i to i) to an oriented path in D(ϑ1);
• both x and y are convex corners of the disk u; and
• the basepoint z ∈ T is not in the image of u.

We say two such maps u, u′ are equivalent if there is an orientation preserving diffeomorphism
ϕ : D2 → D2 with u′ = u ◦ ϕ and ϕ(±i) = ±i. Assuming the set of equivalence classes of such maps
is finite, let n(x, y) denote the number of equivalence classes modulo 2. (We will see below that by
making a small modification of ϑ1, we can arrange for the set of equivalence classes to be finite for
all intersection points x, y.) We then define

dϑ(x) =
∑

y∈A(ϑ0)∩D(ϑ1)

n(x, y) y.

We remark that an oriented path in A(ϑ0) or D(ϑ1) may traverse the horizontal and vertical edges
in either direction, since we view these as unoriented edges. In fact, just as we may drop the edge
orientations on naive train tracks, we can also drop the requirement that paths from −i to i in
∂D2 map to oriented paths in A(ϑ0) and D(ϑ1) in the present setting that ϑ0 and ϑ1 are naive
train tracks. Indeed, the fact that every edge in ϑ0 or ϑ1 has the basepoint on its right implies
that for any immersed disk not covering z the paths determined by the boundary have the correct
orientations. However, we state this requirement as it is relevant for generalizing this pairing to
more general train tracks.

Under mild hypotheses, the vector space C(ϑ0,ϑ1) with linear map dϑ is, in fact, a chain complex:
it may be identified with the box tensor product of the associated bordered invariants. To explain
this, we need to introduce some variants of our train tracks (this will coincide with a notion of
admissibility when we return our focus to three-manifold invariants later). Recall that, to this
point, we have assumed our train tracks come from reduced A-decorated graphs (i.e graphs where
no edges are labelled with ∅). Since we require a bounded type D structure for the box tensor
product to make sense, we will need to relax the reduced assumption slightly.

We will say an A-deocrated graph is almost reduced if the only edges labelled ∅ begin and end on
valence 2 vertices and occur in one of precisely four configurations as shown in Figure 11. Note
that each of these configurations can be replaced by a single arrow labelled 12, 23, 123, or 123,
respectively, without changing the corresponding type D structure (up to homotopy). We can
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1

∅

2

•
◦

◦
•

2

∅

3

◦
•

•
◦

1

∅

23

•
◦

◦
◦

12

∅

3

•
•

•
◦

z z z z

Figure 10. Modifications permitted in almost reduced train tracks. These local moves are useful

for destroying oriented cycles and achieving admissibility in the proof of Theorem 2.2.

extend our naive train track construction to almost reduced A-decorated graphs by embedding the
edges labeled by ∅ as an edge starting and ending on the same side of the square T \ (α ∪ β), as
shown in the figure. Recall that an A-decorated graph is bounded if it contains no oriented cycle.
It is clear that we can replace any reduced graph by a bounded almost reduced graph representing
a type D structure homotopy equivalent to the original by replacing some number of 12, 23, or 123
arrows by the corresponding zig-zag configuration. A train track will be called special bounded if
the underlying A-decorated graph is both bounded and almost reduced.

Theorem 2.2. Fix train tracks ϑ0 and ϑ1, where ϑ0 is reduced and ϑ1 is special bounded. Let N0
A

denote the type A structure associated with ϑ0 and let AN1 denote the type D structure associated
with ϑ1. Then dϑ may be identified with ∂⊠ and there is an isomorphism of chain complexes

C(ϑ0,ϑ1) ∼= N0
A ⊠ AN1

Remark 2.3. With the exception of the proof that follows, we will typically opt for subscripts on
the given type D structures and make use of the shorthand notation N0

A ⊠ AN1 = NA
0 ⊠N1.

Proof of Theorem 2.2. First observe that there is an identification of the generating sets for C(ϑ0,ϑ1)
and N0

A ⊠ AN1, since each vertical (respectively horizontal) segment in A(ϑ0) intersects each hori-
zontal (respectively vertical) segment of D(ϑ1) and there are no other intersection points. Note that
the horizontal segments of A(ϑ0) correspond directly to the ι0 generators of N0

A, while the vertical
segments correspond to the ι1 generators. Similarly, the vertical segments of D(ϑ1) correspond
directly to the ι0 generators of AN1, while the horizontal segments correspond to the ι1 generators.

Since ϑ1 is bounded, the associated type D structure AN1 is bounded and hence ∂⊠ gives a well-
defined differential on N0

A ⊠ AN1. We will identify the linear map dϑ with the differential ∂⊠ by
showing that that each immersed bigon contributing to dϑ is uniquely associated with a pairing
between type D and type A operations contributing to ∂⊠.

We first aim to classify the immersed bigons that contribute to dϑ by decomposing them into pieces.
Observe that by cutting the torus T along the curves α and β, any immersed bigon connecting
intersection points p to q decomposes into embedded pieces. We will show that the only possible
pieces are those shown in Figure 12. We find it helpful to keep track of the type of corners on each
boundary of the bigon (our convention for doing so will be explained shortly), and the dotted boxes
in the top right and lower left quadrants in the figures are meant to highlight these corners. The top
right quadrant will be called the corner region for A(ϑ0) and the lower left quadrant is the corner
region for D(ϑ1).

The first row of the figure shows pieces arising from bigons which involve a ∅-labelled corner in
D(ϑ1) (these are corners that start and end on the same side of the corner region, corresponding to
∅-labelled edges in the A-decorated graph associated to ϑ1); we will call such bigons small bigons.
Small bigons are always cut into exactly two pieces; we explain this for ∅-labelled corners connecting
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Pieces of small bigons:

Starting pieces:

Ending pieces:

Connecting pieces:

Single piece bigon:

∅ ∅

3 3 2

2

1 1

2

2

3

2

2 3

1 1

2

2

1

2

1

2

3 2

2 3 2

1

23 2

32

1

2

2

Figure 11. Decomposing a bigon into tiles: Any small bigon carried by (ϑ0,ϑ1) consists of

exactly two pieces of either the first two types or the second two types in the first row. Any other
bigon either is disjoint from α ∪ β and has the form shown in the bottom row, or it decomposes

into one starting piece, some number of connecting pieces, and one ending piece.

two horizontal edges in D(ϑ1), and the case of a ∅ corner connecting two vertical edges is similar.
The ∅ corner in question connects the right ends of two horizontal segments corresponding to two
◦-generators in the type D structure corresponding to ϑ1, and because ϑ1 is almost reduced these
generators appear in either the first or third zig-zag arrangement in Figure 11. At the left end of
these horizontal segments, the lower one has a corner turning downward (corresponding to the 1
labelled arrow in the decorated graph) and the upper one either continues leftward or turns upward
(corresponding to a 23 or 2 labelled arrow). It is clear that the bigon can not extend past the left
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end of these horizontal edges, since it would then necessarily cover the basepoint, and so it must
stop in the lower right quadrant of T at some vertical edge of A(ϑ0).

For the remaining bigons, we will assume they do not contain any corners of type ∅. Consider a
bigon from an intersection point p to an intersection point q. The only bigons that do not intersect
α and β and thus do not decompose into multiple pieces have the form shown in the last row of
Figure 12; they begin at p in the bottom right quadrant of T and end at q in the top left quadrant,
and each side of the boundary has a single corner labelled by 2. Apart from bigons of this type,
the piece of the bigon containing the initial generator p must look like one of the starting pieces in
the second row of Figure 12. For example, if p is in the lower quadrant then the bigon must open
up and left from p, since a bigon opening down and right would cover the basepoint. The A(ϑ0)
boundary must either pass straight through its corner region (the top right quadrant) or turn left,
since turning right would again lead to the basepoint being covered. If the A(ϑ0) continues upward,
then the D(ϑ1) boundary must turn upward in its corner region to avoid covering the basepoint,
leading to the fourth starting piece in Figure 12, and if the A(ϑ0) boundary turns left then the
D(ϑ1) boundary must continue leftward through its corner region, leading to the second starting
piece shown. If p lies in the top left quadrant then the bigon can either open down and left or up
and right from p; in the former case the D(ϑ1) boundary must turn leftward and in the latter case
the A(ϑ0) boundary must turn upwards, producing starting pieces of the first and third types. Note
that the type D and type A boundaries can only change direction in their respective corner regions,
and backtracking is not possible since ϑ0 is reduced and we assume the ∅-labelled edges of D(ϑ1)
are not involved. Similar consideration shows that the piece of a bigon containing the terminal
generator q takes the form of one of the ending pieces in Figure 12, and all other pieces must be one
of the connecting pieces shown in the figure.

In order to identify dϑ with ∂⊠, we will relate sequences of bigon pieces to type A operations and
sequences of type D operations which pair in the box tensor product. Toward that end, we now
describe our convention for labeling corners of bigon pieces. Recall that each corner in A(ϑ0) or
D(ϑ0) represents an arrow in the corresponding A-decorated graph. Referring to Figure 8 (and
remembering that ϑ1 is reflected across the antidiagonal when constructing D(ϑ1)), we label the
corners of D(ϑ1) the same as the corresponding edge. The label on a corner of A(ϑ0) is the subword
of 321 obtained from the arrow labels in the corresponding A-decorated graph by interchanging 3’s
and 1’s. An equivalent graphical way of describing these labels is to label the corners of each corner
region 0, 1, 2, and 3, ordered counterclockwise starting from the top right corner for the corner
region of A(ϑ0) and from the bottom left corner for the corner region of D(ϑ1), and then label each
corner edge in the boundary of a bigon by the sequence of these labels which are covered (in the
order obtained by following the boundary from p to q). Note that the path from p to q in A(ϑ0)
follows the boundary orientation of the bigon and thus has the basepoint to its right at each corner,
while the path from p to q in D(ϑ1) opposes the boundary orientation and has the basepoint to its
left at each corner. It follows that traversing either path from p to q agrees with the orientation
of the edges in the corresponding A-decorated graphs, and thus each boundary path from p to q
determines a directed path in the A-decorated graphs. Finally, recall that a directed path in an
A-decorated graph defines either a δk map in the associated type D structure or an mk map in
associated A∞ module.

For a given bigon from p to q, let x denote the horizontal or vertical edge of A(ϑ0) containing p and
let x′ denote the horizontal or vertical edge containing q; similarly, let y and y′ denote the edges of
D(ϑ1) containing p and q. Let x̃, x̃′, ỹ, and ỹ′ denote the corresponding generators of N0

A or AN1,
so that p corresponds to x̃⊗ ỹ and q corresponds to x̃′ ⊗ ỹ′. Let I1, . . . , Ik is the sequence of corner
labels along the D(ϑ1) part of the boundary of the bigon, viewed as a path from y to y′. This path
encodes an operation

δk(ỹ) = ρI1 ⊗ · · · ⊗ ρIk ⊗ ỹ′

in AN1. Let J1, . . . , Jℓ be the sequence of corner labels along the A(ϑ0) part of the boundary, viewed
as a path from x to x′. To determine the corresponding A∞ operation, note that 1’s and 3’s are
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already swapped relative to labels in the A-decorated graph, so by the duality described in Section
2.3 it just remains to concatenate the corner labels and divide into maximal increasing subwords.
That is, let I ′1, . . . , I

′
k′ be the sequence such that I ′1 · · · I ′k′ = J1 · · · Jℓ, each I ′i is a subword of 123,

and k′ is minimal with respect to these conditions. Then the path from x to x′ in A(ϑ0) encodes
an operation

µk
′+1(x̃, ρI′1 , · · · , ρI′k′

) = x̃′

in N0
A.

A key observation is that for any bigon, the sequences of corner labels from each half of the boundary
label have the same concatenation—that is, I1 · · · Ik = J1 · · · Jℓ. To see this, observe that for each
piece in Figure 12, the label on the D(ϑ1) corner can be obtained from the label on the A(ϑ0)
corner by removing a 3 at the beginning if the piece has boundary on the right side of the square,
adding a 3 at the end if the piece has boundary on the left side of the square, removing a 1 at the
end if the piece has boundary on the top side of the square, and adding a 1 at the beginning if the
piece has boundary on the bottom of the square. Note that for any bigon formed from these pieces,
excluding small bigons, both boundary arcs move only upward and leftward when traveling from x
to y, so a piece with a boundary on the left side of the square is always followed by a piece with
boundary on the right side of the square, and a piece with boundary on the top is always followed
by a piece with boundary on the bottom. It follows that the changes made to obtain the D(ϑ1)
labels from the A(ϑ0) labels cancel out when concatenating all labels along the boundary paths
from x to y. For example, for the bigon in Figure 13 the concatenation of the corner labels along
either boundary path is the word 123. Since I1 · · · Ik = J1 · · · Jℓ, and {I1, · · · , Ik} is a sequence of
subwords of 123 with the first letter of Ii less than the last letter of Ii−1, we have immediately that
the sequences {I1, . . . , Ik} and {I ′1, . . . , I ′k′} agree. From this it follows that the operations discussed

in the preceding paragraph pair in the box tensor product to produce a x̃′ ⊗ ỹ′ term in ∂⊠(x̃⊗ ỹ).

We have shown that every non-small bigon encodes a term in ∂⊠. It is easy to check the same is
true for small bigons. In this case, p and q lie on the same horizontal or vertical edge of A(ϑ0), so
x = x′, and the ∅ corner on D(ϑ1) encodes an operation δ1(ỹ) = 1⊗ ỹ′ in AN1. Such a term in δ1

contributes x̃⊗ ỹ′ to ∂⊠(x̃⊗ ỹ), as desired.

It remains to show that every term in ∂⊠ corresponds to a bigon in the way described above. First
consider terms in ∂⊠(x ⊗ y) arising from differentials of the form δ1(y) = 1 ⊗ y′ in AN1. For each
such term, x⊗ y′ appears in ∂⊠(x⊗ y) for each generator x of N0

A with the appropriate idempotent.
It is clear that each of these terms correspond to a small bigon, since the horizontal (or vertical)
edges of D(ϑ1) corresponding to y and y′ intersect each vertical (or horizontal) edge of A(ϑ0) and
are connected by a ∅-labelled corner on one end. All other terms in ∂⊠(x ⊗ y) arise from pairing
two operations of the form

µk+1(x̃, ρI1 , · · · , ρIk) = x̃′ and δk(ỹ) = ρI1 ⊗ · · · ⊗ ρIk ⊗ ỹ′

for some sequence of algebra elements ρI1 , · · · , ρIk . The presence of this δk map in AN1 implies the
existence of a path in D(ϑ1) from y to y′ with k corners of types I1, . . . , Ik. Similarly, the presence
of this mk+1 operation in N0

A implies the existence of a path in A(ϑ0) from x to x′ with sequence
of corner labels {J1, . . . , Jℓ} obtained by dividing I1 · · · Ik into a minimal number of subwords of
321. We need to show that these two paths must bound a bigon. It is clear that there is some path
consisting of horizontal edges in the top left quadrant, vertical edges in the bottom right quadrant,
and corners in the top right quadrant that would form a bigon with the given path in D(ϑ1)—such
a path could be obtained by applying a homotopy to the path in D(ϑ1) avoiding the basepoint to
achieve the desired form. By the discussion above, this path must have sequence of corner labels
{J1, . . . , Jℓ}, and any path in A(ϑ0) with the same sequence of corners would also bound a bigon
with the path in D(ϑ1). □
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1

23

1

23

Figure 12. The chain complex arising from −1 surgery on the right-hand trefoil. The shaded

region highlights a bigon with edges corresponding to m2(x0, ρ123) = y0 and δ1(x1) = ρ123⊗y1 so

that y0 ⊗ y1 is a summand of ∂⊠(x0 ⊗ x1). The reader can also find an example of a single-piece

bigon; compare Figure 12.

3. Classifying extendable type D structures

This section proves Theorem 1.5, our structure theorem for type D structures under the hypothesis
that the module in question is extendable. While this is a purely algebraic result, it is of interest
in the present context owing to the fact that the three-manifold invariants that we wish to study
all satisfy this additional hypothesis; compare Theorem 1.4. As such, the ultimate outcome of this
section will be the existence part of Theorem 1.1.

Broadly, after defining extendable type D structures in Section 3.1, we establish the structure theo-
rem in two steps. First, we give a partial characterization in terms of matrices over the ring F[U ]/U2,
and second, we give a combinatorial algorithm that simplifies the train tracks resulting from this
partial characterization.

3.1. Extended type D structures. The torus algebra A admits an extension, denoted by Ã,
which plays a key role.

ι0 ι1

ρ1

ρ2

ρ3

ρ0

Figure 13. A quiver for the ex-
tended torus algebra.

The algebra Ã is a path algebra over the quiver shown in Figure 14
with relations ρiρi−1 = 0, where the indices are to be interpreted
mod 4, along with the relation ρ0ρ1ρ2ρ3ρ0 = 0. As a vector space
over F it is spanned by the idempotents ι0 and ι1, along with el-
ements ρI = ρi1ρi2 · · · ρik for each sequence I = i1 . . . ik of indices
in Z/4Z containing at most one 0 such that ij+1 ≡ ij + 1 for each

j. The torus algebra may be recovered from Ã by setting ρ0 = 0.

More precisely, if J is the ideal generated by ρ0 then A = Ã/J .
As with A, write 1 = ι0 + ι1 and use the convention ρ∅ = 1. We

distinguish the element U = ρ1230 + ρ2301 + ρ3012 + ρ0123 and note that U is central in Ã.

Definition 3.1. An extended type D structure over Ã is an I module V = ι0V ⊕ ι1V equipped with

a map δ̃1 : V → Ã⊗IV such that the map ∂̃ : Ã⊗IV → Ã⊗IV defined by ∂̃(a⊗x) = a· δ̃1x satisfies

∂̃2(x) = Ux for all x ∈ V . The module Ñ = Ã ⊗I V is the extended type D module associated with

V and δ̃1.

An extended type D structure over Ã can be specified by the pair of vector spaces ι0V and ι1V
along with a collection of coefficient maps DI : ιi1−1V → ιikV where I = i1 . . . ik is a (possibly
empty) sequence of indices in Z/4Z containing at most one 0 such that ij+1 ≡ ij + 1 for each j. In
the case of the empty sequence we have two maps D∅ : ιiV → ιiV for i ∈ {0, 1}. The coefficient
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maps encode δ̃1 by

δ̃1 =
∑
I

ρI ⊗DI .

The condition that ∂̃2(x) = Ux translates to the condition that for each I, the sum
∑
J∪K=I DK ◦DJ

is zero unless I is 0123, 1230, 2301, or 3012, in which case the sum is the identity on the appropriate
summand of V . A type D structure over A admits a similar description in terms of coefficient maps
DI where I ∈ {∅, 1, 2, 3, 12, 23, 123}.

Any extended type D structure over Ã determines a type D structure overA by ignoring all coefficient

maps for which I contains 0 or, equivalently, ignoring all terms in δ̃1 involving a multiple of ρ0; this
corresponds to taking the quotient by the ideal J . In this case we say that the initial extended
type D structure is an extension of the quotient type D structure. Equivalently, an extended type

D module Ñ is an extension of N if A⊗Ã Ñ is isomorphic to N as a differential A module. We say

that a type D module N is extendable if it has an extension Ñ , and we say that N = A⊗Ã Ñ is the
underlying type D module of N .

We remark that, though it is not clear a priori, Proposition 4.16 shows that any two extensions of
a type D structure N must be homotopy equivalent. In other words, an extended type D structure
contains no more information than its underlying type D structure. Thus the chief advantage to
working with extended type D structures is not the extension that we choose, but simply the fact
that an extension exists. Being extendable is a rather strong algebraic constraint and, by restricting
to extendable modules (as we will do for the rest of the paper), the geometric description of type D
modules over A can be simplified considerably.

Just as a type D structure (along with a choice of basis) can be represented by an A-decorated graph,

an extended type D structure with a specified basis can be represented by an Ã-decorated graph,
where the set of possible edge labels is expanded to include all sequences I = i1 . . . ik of elements of
Z/4Z with iℓ ≡ iℓ−1 + 1 and with at most one iℓ = 0. The method for constructing an extended
type D structure from a graph is the same: vertices labeled by • and ◦ correspond to ι0-generators
and ι1-generators, respectively, and an arrow labeled by I from x to y contributes a ρI ⊗ y term to

δ̃1(x). Analogous to A-decorated graphs, Ã-decorated graphs satisfy a condition on the counts of
length two paths of arrows, which ensures the result is in fact an extended type D structure.

In Section 2 we realized the A-decorated graph Γ representing a reduced or almost reduced type
D structure geometrically by immersing it in the parametrized torus T . This construction extends
immediately to decorated graphs associated with extensions, where the arcs corresponding to the
additional edge labels are determined by Figure 15; the result is a naive train track representing the
extended type D structure. Note that all edges of this train track are oriented, but a pair of vertices
may be connected by a pair of parallel but oppositely oriented edges; in this case, for convenience,
we adopt the convention that the two opposing oriented edges are replaced with a single unoriented
edge. For example, consider the type D module in Figure 9; a choice of extension is illustrated in
Figure 16 together with the corresponding train track.

3.2. Train tracks and matrices. We have so far considered only naive train tracks constructed

from A-decorated or Ã-decorated graphs, but we will have need to work with a larger class of train
tracks in the marked torus, which we now formalize.
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ρ1 ρ12 ρ123 ρ1230 ρ12301 ρ123012 ρ1230123

ι0 ρ2 ρ23 ρ230 ρ2301 ρ23012 ρ230123

ι1 ρ3 ρ30 ρ301 ρ3012 ρ30123

ρ0 ρ01 ρ012 ρ0123

Figure 14. Train track edges corresponding to elements of the extended algebra Ã. These can

also be interpeted as homotopy classes of clockwise moving paths (or constant paths, in the case

of ι0 and ι1) connecting sides of a square and passing the top right corner at most once, and Ã is
generated as an F-vector space by these homotopy classes; algebra multiplication is concatenation

of paths, where the product is zero if the concatenation does not exist or passes the top right

corner twice. The shaded elements generate A.
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Figure 15. The train track (right) associated with an extended type D structure (left). This
extended type D structure is an extension of the type D structure in Figure 9; the extended
coefficient maps are shown in gray.

z z

Figure 16. Examples of counter-

clockwise fishtails. These never ap-
pear in a toroidal train track.

Definition 3.2. A train track in the marked torus T will refer to
an immersed train track ϑ in T with the following properties: (1)
ϑ is disjoint from the basepoint in T and perpendicular to α and
β; (2) every intersection of ϑ with α ∪ β is a switch and called a
primary switch of ϑ; and (3) no oriented path carried by ϑ contains
a counterclockwise fishtail (see Figure 17).
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Note that all the switches in a naive train track are primary, but
this is not required by the definition. As we will see in the next subsection, one of the key advantages
of the train track notation is that it allows us to push some of the switches in a train track into
the interior of the fundamental domain for T . In addition, the definition allows for train tracks
where a section of the track simply terminates in a monovalent vertex. Although tracks of this form
cannot appear as the train track associated with an extendable type D structure, pairing with them
provides a useful way of distinguishing between two such tracks (c.f. Section 4.3).

While we will often simply use the term train track, all train tracks we will discuss are in the marked
torus (with the exception of those in Section 3.8) and should be understood to satisfy the conditions
above. Within this broader class of objects, we will be able to manipulate our naive train tracks
geometrically to find much simpler representatives. Importantly, the discussion of pairing above will
carry over directly to this more general class of train tracks.

Given a train track ϑ in T with n primary switches, we can construct a 2n × 2n matrix Mϑ

encoding the essential information of ϑ. We cut T open along α and β to form a square, with our
usual convention that β is horizontal (oriented rightward), α is vertical (oriented upward), and the
basepoint is in the top right corner of the square. The primary switches give 2n marked points on
the edges of the square, which we label v1, . . . , v2n clockwise, starting from the top right corner. We
let k denote the number of primary switches of ϑ on α, so that vi is on the right side of the square
if 1 ≤ i ≤ k, the bottom side if k + 1 ≤ i ≤ n, the left side if n+ 1 ≤ i ≤ n+ k, and the top side if
n+ k+1 ≤ i ≤ 2n. The (i, j) entry of Mϑ counts immersed oriented paths in ϑ through the square
from vi to vj . Such a path can be given a label recording how many times it passes the base point
on its left. More precisely, any immersed path through the square from a primary switch x to a
primary switch y can be projected to a path in the boundary of the square by sending each point in
the interior of the path to the boundary following the path’s leftward pointing normal vector. The
resulting path connects the corner after x (moving clockwise around the boundary of the square) to
the corner before y. We precompose this path with the clockwise moving path from x to the corner
after x and postcompose with the path from the corner before y to y, resulting in a path from x to
y in the boundary of the square. The assumption that ϑ has no counterclockwise fishtails ensures
that this projected path will have net clockwise movement around the boundary. We weight each
path by Um, where m is the number of times (counted with sign) that the projected path passes
the top right corner of the square. We set U2 = 0 and count paths modulo 2, so Mϑ has coefficients
in F[U ]/U2.

Definition 3.3. We will say that train tracks ϑ1 and ϑ2 in T are equivalent ifMϑ1
=Mϑ2

. A train
track ϑ is said to be reduced if no immersed oriented paths through the square T \ (α ∪ β) begin
and end on the same side of the square unless they are weighted by a positive power of U . A train
track ϑ is valid if M2

ϑ = UI2n, where I2n is the 2n× 2n identity matrix.

The significance of these restrictions on train tracks is found in the following proposition:

Proposition 3.4. The following are equivalent:

(i) Reduced extended type D structures with a chosen (ordered) set of generators.
(ii) Equivalence classes of valid, reduced train tracks in T .
(iii) 2n×2n matrices M over F[U ]/U2, together with an integer 0 ≤ k ≤ n, such that M2 = UI2n

and M is strictly block upper triangular modulo U with respect to blocks of size k, n− k, k,
and n− k.
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z z

Figure 17. Equivalent valid train tracks in T .

Before proving this proposition it is worth pausing to con-
sider a simple example. The pair of train tracks in Figure
18 are equivalent; the reader should construct the asso-
ciated four-by-four matrix in each case and observe that
these are equal, as required. The key feature here is that
the additional path in the train track on the right car-
ries the label U2, which is set to zero in the matrix. On
the other hand, an inequivalent train track is obtained
by considering only the horizontal two-way tracks of this
example. Although this train track is inequivalent to the ones given, it represents an isomorphic
module. For generators x and y such that D123012(x) = y there is an isomorphism of modules over

Ã given by x′ = x+ ρ1230 ⊗ y and y′ = y, so that D123012(x
′) = 0. Note that this is an isomorphism

between two different choices of extension (of a fixed type D structure) as Ã modules but not an
isomorphism as F vector spaces. That is, this train track is weakly equivalent to those of Figure 18
in the sense of Definition 3.5 below.

Proof of Proposition 3.4. Any extended type D structure Ñ , along with a specified basis B, deter-

mines a naive train track ϑ(Ñ , B) as described above, and it is immediate from the construction

that if Ñ is reduced then so is ϑ(Ñ , B). This particular train track determines an equivalence class

of train tracks. We must check that ϑ(Ñ , B) is valid, but postpone this until after the discussion of
matrices below.

Any valid reduced train track ϑ determines a matrix Mϑ as described above. This is a 2n × 2n
matrix, where each row or column corresponds to primary switches on the boundary of the square
T \ (α ∪ β). These may be split into blocks according to which side each primary switch is on. The
fact that paths in ϑ have net clockwise rotation ensures that any path labelled by 1 contributes to
an entry above the diagonal in Mϑ; the fact that ϑ is reduced further ensures that no 1 appears in
the blocks along the diagonal of Mϑ. By definition, the fact that ϑ is valid implies M2

ϑ = UI2n.

Finally, a reduced extendable type D structure can be extracted from a matrix M and an integer
k as in (iii). The vector space ι0V has generators x1, . . . , xk and ι1V has generators xk+1, . . . , xn.
Each generator xi corresponds to a pair of indices i and t(i), where

t(i) =

{
n+ k + 1− i if i ≤ k

2n+ k − i+ 1 if i > k.

An entry in the j or t(j) column and the i or t(i) row of M contributes an xj term to the coefficient
map DI(xi), where I is determined by the position in the matrix with respect to the block decom-
position of M . More precisely, write M =M1 +MU where M1 has entries that are 1 or 0 while MU

has entries that are U or 0. Then the block decompositions of M1 and MU with respect to blocks
of size k, n − k, k, and n − k recover the coefficient maps for the corresponding extended type D
structure as follows:

(1) M1 =


0 D1 D12 D123

0 0 D2 D23

0 0 0 D3

0 0 0 0

 MU = U


D1230 D12301 D123012 D1230123

D230 D2301 D23012 D230123

D30 D301 D3012 D30123

D0 D01 D012 D0123


Here the blocks are the matrices representing DI , acting by right multiplication, with respect to
the basis {x1, . . . , xk} of ι0V , the basis {xk+1, . . . , xn} of ι1V , or these bases in reversed order,

as appropriate. In the case that M = Mϑ(Ñ,B) is the matrix associated with a pair (Ñ , B), the

extended type D structure extracted from M in this way exactly recovers Ñ , as there is a one to one
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correspondence between nonzero terms in M1 or MU , paths in the train track ϑ(Ñ , B), and nonzero

terms in the coefficient maps for Ñ .

It remains to show that ϑ = ϑ(Ñ , B) is valid, or equivalently that the corresponding matrixMϑ(Ñ,B)

squares to UI2n, and conversely that ∂̃2(x) = Ux in the extended type D structure determined by
any matrix M with M2 = UI2n. To see this, we look at the block decomposition of M2, which
can be computed from the block decomposition of M1 and MU above. Let D̄I denote the sum∑
J∪K=I DJDK where J and K are nonempty sequences of indices in Z/4Z. Using this shorthand,

we have:

M2 =


0 0 D̄12 D̄123

0 0 0 D̄23

0 0 0 0

0 0 0 0

+ U


D̄1230 D̄12301 D̄123012 D̄1230123

D̄230 D̄2301 D̄23012 D̄230123

D̄30 D̄301 D̄3012 D̄30123

D̄0 D̄01 D̄012 D̄0123


Note that, by slight abuse of notation, we are using DI to denote both a coefficient map and a matrix
representing it, and the matrix acts by right multiplication. Thus the matrix DJDK is the matrix
representing the map DK ◦ DJ . It is now clear that the condition that M2 = UI2n is precisely
the condition on composition of coefficient maps for the corresponding reduced extended type D
structure. □

To restrict an extended type D module Ñ to its underlying type D module N , we simply set ρ0 = 0
in the algebra, and thus ignore all coefficient maps DI for which I contains 0. It is clear that
the analogous operation for the corresponding matrix is setting U = 0, resulting in a matrix with
coefficients in F. This motivates the following definitions:

Definition 3.5. A train track ϑ in T is weakly valid if the corresponding matrix Mϑ squares to 0
modulo U . Two train tracks ϑ1 and ϑ2 are weakly equivalent if the matrices Mϑ1 and Mϑ2 agree
modulo U .

The following is immediate from Proposition 3.4.

Proposition 3.6. The following are equivalent:

(i) Reduced type D structures over A, up to isomorphism as F vector spaces, with a chosen
(ordered) set of generators.

(ii) Weak equivalence classes of weakly valid, reduced train tracks in T .
(ii) 2n× 2n matrices M over F, together with an integer 0 ≤ k ≤ n, such that M2 = 0 and M

is strictly block upper triangular with respect to blocks of size k, n− k, k, and n− k. □

Although we are mainly interested in reduced train tracks, we observe that valid almost reduced
train tracks can be defined as those corresponding to almost reduced type D structures over A.

We pause briefly to discuss pairing of train tracks in T , which is defined just as it was for naive train
tracks in Section 2.5. A pair (ϑ0,ϑ1) is admissible if there are no immersed annuli cobounded by
A(ϑ0) and D(ϑ1), where A(ϑ) denotes the result of including ϑ into the first quadrant and extending
vertically/horizontally and D(ϑ) is the reflection of A(ϑ) across the anti-diagonal. Then C(ϑ0,ϑ1)
is the vector space generated by intersection points of A(ϑ0) and D(ϑ1), equipped with a linear map
dϑ that counts bigons not covering the basepoint with boundary carried by the pair (ϑ0,ϑ1), with
the requirement that both sides of the bigon are oriented paths from the initial intersection point to
the terminal intersection point. Note that, unlike for naive train tracks, the orientation requirement
is meaningful for an arbitrary train track in T . The key observation is that defining C(ϑ0,ϑ1) does
not require all the information in ϑ1 and ϑ2, it is in fact determined only by their weak equivalence
classes.
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Proposition 3.7. Let ϑ0, ϑ′
0 be weakly valid reduced train tracks and ϑ1,ϑ

′
1 be weakly valid al-

most reduced train tracks such that the pairs (ϑ0,ϑ1) and (ϑ′
0,ϑ

′
1) are admissible. If ϑ0 is weakly

equivalent to ϑ′
0 and ϑ1 is weakly equivalent to ϑ′

1, then C(ϑ0,ϑ1) = C(ϑ′
0,ϑ

′
1) as chain complexes.

Proof. Note that to count bigons connecting two intersection points, one need only know the count
of paths connecting each pair of primary vertices in each train track. The orientation requirement
implies that we can ignore any path in ϑ0 or ϑ1 that has the puncture on the left side of the path;
these are precisely the paths weighted by U in Mϑ0

and Mϑ1
. Thus the map dϑ is determined by

the weak equivalence class of ϑ0 and ϑ1. □

Note that under the hypotheses above dϑ is a differential, making C(ϑ0,ϑ1) a chain complex. Indeed,
if ϑ0 and ϑ1 correspond to type D structuresN0 andN1, respectively, then they are weakly equivalent
to the naive train tracks representing N0 and N1, and it follows from Theorem 2.2 that C(ϑ0,ϑ1) is
isomorphic as a chain complex to NA

0 ⊠N1.

3.3. Simplifying valid train tracks. Consider our running example and the train track in Figure
16. We observe that this train track has two special properties. First, there are exactly two unori-
ented edges, one from each direction, incident to each switch. It follows that if the oriented edges
are ignored, the unoriented edges form a collection of immersed curves. Second, the extra oriented
edges can be grouped in pairs, where each pair connects the same two sections of the immersed
curve, oriented the same way but turning opposite directions at each end and crossing once. We can
slide the endpoints of each pair of oriented segments near each other along the unoriented segments,
without changing the equivalence class of the train track, as shown in Figure 19(a). (In doing so,
we have passed from a naive train track in which every switch is primary, to one in which some of
the switches lie in the interior of the fundatmental domain for T .) The resulting X shaped pairs of
oriented arrows will be called crossover arrows, and to simplify diagrams these pairs will be replaced
by a bold arrow (Figure 19(b)).

=

(a) (b)

Figure 18. (a) The train track from Figure 16 homotoped so that the oriented edges form

crossover arrows. (b) Diagrammatic shorthand for crossover arrows.

The goal of the present subsection is to prove that these features are not unique to this example,
but indeed hold for (some representative of) every equivalence class of valid reduced train tracks.

Proposition 3.8. Any valid reduced train track in T is equivalent to a train track ϑ with the
following form:

• Every switch of ϑ has exactly one unoriented edge on each side, so that ϑ is a collection of
(unoriented) immersed curves along with additional oriented edges connecting points on the
immersed curves;

• the immersed curves restrict to horizontal and vertical segments outside of the square [ 14 ,
3
4 ]×

[ 14 ,
3
4 ], which we call the corner box since it is where the immersed curves change direction;

• within the corner box, the immersed curves restrict to embedded arcs connecting different
sides of the corner box (we call these arcs corners);
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• the oriented edges appear in pairs that form crossover arrows (as in Figure 19);
• the crossover arrows appear outside the corner box, and they move clockwise around the
corner box.

Conversely, any train track of this form is a valid, reduced train track in T .

See Figure 21(c) for an example of a train track of this form.

Before proving Proposition 3.8, we review some linear algebra of matrices over F[U ]/U2. Any
invertible matrix over F[U ]/U2 can be written as the product of elementary matrices of the following
two types:

Ai,j =

j



1
. . .

i 1 1
. . .

0 1
. . .

1

AUi,j =

j



1
. . .

i 1 U
. . .

0 1
. . .

1

For Ai,j we require i ̸= j; in AUi,i the (i, i) entry is 1 + U . Each of these elementary matrices is its
own inverse. We remark that there is another type of elementary matrix, transposition matrices,
but over F = Z/2Z these can be obtained by products of matrices of type Ai,j .

Lemma 3.9. Let M be a 2n×2n matrix over the base ring F[U ]/U2 that is upper triangular modulo
U such that M2 = UI2n. Then M can be written as P = PM̄P−1 where P is composition of
elementary matrices of the form AUi,j or of the form Ai,j with i < j, and M̄ has the following form:

• Each row and each column of M̄ has exactly one nonzero entry;
• The diagonal entries of M̄ are zero;
• If 1 ≤ i < j ≤ 2n, either the (i, j) entry and the (j, i) entry of M̄ are both zero or the (i, j)

entry is 1 and the (j, i) entry is U .

Proof. Since the elementary matrices are their own inverses, it is enough to show that M can be
reduced to a matrix M̄ of the desired form by conjugating with elementary matrices of the form AUi,j
or of the form Ai,j with i < j. Note that conjugating by these matrices preserves the fact that M
is upper triangular mod U and that M2 = UI2n.

We proceed by induction on n. For n = 1, there are finitely many 2 × 2 matrices over F[U ]/U2.
Only four of these square to UI2 and are upper triangular mod U :[

0 1
U 0

]
,

[
0 1 + U
U 0

]
,

[
U 1
U U

]
, and

[
U 1 + U
U U

]
.

The first has the desired form already, and it is routine to check that the remaining three reduce to
the first after conjugating with AU1,1, A

U
2,1, and A

U
1,1A

U
2,1, respectively.

If n > 1, choose i and j with j − i as small as possible so that the (i, j) entry of M is 1 or 1 + U .
Conjugating by Aj,k has the effect of adding the jth column to the kth column and adding the
kth row to the jth row. After conjugating by Aj,k if necessary for each k > j, we can ensure that
the (i, k) entry of M is 0 or U . After conjugating with matrices of the form AUj,k for any k, we can

assume that the ith row has a 1 in the jth entry and zeros elsewhere. The fact thatM2 = UI2n then
implies that the jth row has a U in the ith entry and zeroes elsewhere. Similarly, after conjugating
with Ak,i with k < i or with AUk,i for any k we can ensure that the only nonzero entry in the jth

column of M is a 1 in the ith entry. It follows from the fact that M2 = UI2n that the only nonzero
entry in the ith column is a U in the jth entry.
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After the conjugations described above, the matrix M has the form desired in the ith and jth
rows and columns. We need to show that rest of the matrix can be put in the desired form using
conjugations with Ak,ℓ and A

U
k,ℓ with k and ℓ not in {i, j}. This is equivalent to showing that the

the 2(n− 1)× 2(n− 1) matrix obtained from this one by deleting the ith and jth rows and columns
can be reduced to the desired form, which we take as the inductive hypothesis. □

y

xi

xj

y′

•

Figure 19. After adding a crossover ar-

row from xi to xj , the path from y to

xi gives rise to a path from y to xj

(shaded). There is also a new path from

xi to y′, which carries a weight of U .

Lemma 3.9 lets us relateM to a matrix of a simple form through
conjugation by elementary matrices; this in turn has a nice geo-
metric interpretation in terms of train tracks. Let ϑ be a train
track that has only horizontal or vertical segments outside the
corner box [ 14 ,

3
4 ]× [ 14 ,

3
4 ], and let ϑ′ be the train track obtained

from ϑ by adding a clockwise moving crossover arrow outside
the corner box from the segment with endpoint xi to the seg-
ment with endpoint xj . We claim that Mϑ′ is obtained from
Mϑ by conjugating with an elementary matrix. The counts
of smooth paths are identical except that there are some new
paths in ϑ′ involving the crossover arrow. For each path into
xi in ϑ, ϑ′ will have an additional path into xj , and for each
path out of xj in ϑ, ϑ′ will have an additional path out of xi; if
the crossover arrow passes the basepoint in the top right corner
of the square m times, the new paths will be weighted by an
additional factor Um. An example of this is shown in Figure 20. It follows that Mϑ′ is obtained
from M by adding Um times the jth row to the ith row and Um times the ith column to the jth
column. In other words, we conjugate by Ai,j if the crossover arrow does not pass the base point or
by AUi,j if the crossover arrow passes the basepoint once. (If the basepoint is passed more than once

then Mϑ′ ≡Mϑ modulo U2).

Proof of Proposition 3.8. Let ϑ′ be a valid reduced train track in T and let M = Mϑ′ be the
corresponding matrix. Set M = PM̄P−1 as in Lemma 3.9; the matrix M̄ corresponds to an
extended type D structure, from which we can construct a train track ϑ̄. To construct ϑ̄, let ϑ̄ have
the same primary vertices as ϑ′, labelled x1, . . . x2n as described above, and add oriented corner
edges from xi to xj if the (i, j) entry of M̄ is nonzero. The form of M̄ implies that there will
be exactly one incoming and one outgoing corner edge at each primary vertex, and that for each
corner edge from xi to xj there is an oppositely oriented edge from xj to xi. Replacing the pairs
of oppositely oriented corner edges with single unoriented corner edges as usual, observe that there
is exactly one unoriented corner edge at each primary vertex. It follows that ϑ̄ is an immersed
multicurve.

We observed that M is obtained from M̄ by conjugating with a sequence of elementary matrices of
the form Ai,j with i < j or AUi,j . Each conjugation corresponds to adding a crossover arrow to ϑ̄

near the boundary of the square. That is, adding the appropriate sequence of crossover arrows to ϑ̄
produces a train track ϑ whose corresponding matrix is M . Since we only use type Ai,j matrices if
i < j, all the crossover arrows added move clockwise. Up to regular homotopy, we can assume that ϑ̄
is horizontal or vertical outside of the corner box [ 14 ,

3
4 ]× [ 14 ,

3
4 ] and that the crossover arrows added

lie outside the corner box. Since ϑ is reduced, the arcs within the corner box connect different sides
of the square. Thus ϑ has the form claimed and ϑ is equivalent to ϑ′ since the matrix associated to
each is M .

Conversely, given any train track ϑ of this form, there is a reduced train track ϑ̄ obtained by
removing the crossover arrows. ϑ̄ is clearly valid and Mϑ is obtained from Mϑ̄ by conjugating with
elementary matrices, which preserves the property that the matrix squares to UI2n. It follows that
ϑ is valid as well as reduced. □
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(a) (b) (c)

Figure 20. (a) A train track equivalent to the one in in Figure 19, after a slight homotopy. This
has the form specified in Proposition 3.8 except that two crossover arrows move counterclockwise.

(b) The innermost counterclockwise arrow can be replaced by a clockwise arrow by pushing it

through the corner region. (c) The remaining counterclockwise arrow can be replaced with two
clockwise arrows by pushing through the corner region and resolving a crossing. Note that this

train track is in the form guaranteed by Proposition 3.8.

We remark that in many cases, a naive train track can be transformed into a train track of the form
predicted by Proposition 3.8 geometrically, without using the linear algebra above. For example, in
the running example in Figure 19(a), pairs of oriented edges have been homotoped together to form
crossover arrows; it is clear that this homotopy preserves the equivalence class of train tracks. A
further homotopy ensures that the crossover arrows lie outside of a corner box, as in Figure 21(a).
This train track has the desired form except that two of the crossover arrows run counterclockwise.
This can be fixed by sliding the two counterclockwise arrows through the corner box and using some
local moves that preserve the equivalence class of train track, which will be discussed in Section 3.4
(see Figure 22); in this case the local moves result in resolving a crossing of the immersed curve and
adding an additional crossover arrow. In small examples, this geometric approach is often faster
than the linear algebra used above. However, it would difficult to make this approach systematic
for all cases. By passing from train tracks to matrices and back, the proof of Proposition 3.8 takes
advantage of the interplay between linear algebra and our geometric arguments.

3.4. Crossover arrow calculus. By Proposition 3.8, we can always represent a reduced extend-
able type D structure with a train track consisting of an immersed multicurve with crossover arrows.
Our next aim is to simplify these train train tracks using certain geometric moves involving sliding
crossover arrows along the immersed curves. First, we are allowed to slide arrows along the mul-
ticurve within the square T \ (α ∪ β) without changing the equivalence class of the train track, as
long as ends of arrows do not slide past each other. Moreover, the local moves shown in Figure 22
produce equivalent train tracks. To see this, note that the mod 2 count of oriented paths between
any pair of endpoints is the same on both sides of each replacement. Arrows may slide past each
other within the square T \ (α ∪ β) with the caveat that if the head of one arrow passes the tail of
another arrow, we must add a new arrow that is homotopic to the composition of the two arrows.
By composition, we mean the the arrows are stacked head to tail, where we assume the tail of the
second arrow and the head of the first arrow lie on opposite sides of an immersed curve at the same
point; to arrange this we may first need to add U-turns at the beginning and end of one arrow, which
may be viewed as a regular homotopy of train tracks. Finally, a pair of opposing arrows connecting
the same two segments of immersed curve can be replaced with a crossing and one arrow.

In addition to the local moves in Figure 22, we will make use of two additional moves to modify the
train tracks:

(M1) add or remove a clockwise crossover arrow that is in a neighborhood of the boundary of the
square T \ (α ∪ β) and which passes at least one corner of the square;
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(a)

(b) (c)

(d)

(e)

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼

Figure 21. Local moves for crossover arrows producing equivalent train tracks: (a) beginnings

or ends of arrows slide past each other freely (three such instances are pictured, though this is not

exhaustive; for instance, similar configurations can be obtained by reversing the direction of all
arrows), (b) U-turns can be added at the start and end of an arrow if they turn opposite directions;

(c) a pair of adjacent parallel crossover arrows connecting the same two strands can be added or
removed; (d) the start of one arrow may slide past the end of another arrow at the expense of

adding a new arrow that is the composition of the two (two example configurations are shown);

(e) opposing arrows can be replaced with one arrow and a crossing.

↔ ↔

Figure 22. Examples of the moves (M1), left, and (M2), right.

(M2) move a crossover arrow which is in a neighborhood of one side of the square T \ (α ∪ β) to
the opposite side of the square; in other words, slide an arrow across either α or β in the
torus T .

Examples of these moves are shown in Figure 23. In each move, we assume that there are no other
crossover arrows between the arrow being (re)moved and the boundary of the square. More precisely,
there is a neighborhood of the boundary of the square containing the crossover arrow in question
but no other crossover arrows, and in which the immersed curve consists of horizontal and vertical
segments. In contrast with the local moves described in Figure 22, the moves (M1) and (M2) change
the equivalence class of the train track. However, these moves induce isomorphisms between the
associated extended type D structures.

Proposition 3.10. Suppose ϑ′ is obtained from ϑ by an application of a sequence of the moves

(M1) and (M2) together with the local moves depicted in Figure 22. If Ñ ′ and Ñ are the extended

type D structures associated with ϑ′ and ϑ, respectively, then there is an isomorphism Ñ ′ ∼= Ñ as

Ã modules.
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Proof. As observed, all local moves produce equivalent train tracks, and hence equality on the
associated extended type D structures. To prove the proposition then, we need to establish changes
of basis for each of the moves (M1) and (M2) that induce the desired isomorphisms.

Suppose first that ϑ′ is obtained from ϑ by an application of (M1), adding a crossover arrow from

horizontal or vertical edge representing a generator x of Ñ to an edge representing a generator y.

We claim that Ñ ′ is related to Ñ by the change of basis replacing x with x+ ρI ⊗ y, where I is the
sequence of corners passed by the crossover arrow being added.

Consider for concreteness the case where the sequence of corners I associated with the arrow being
added is 1 (other cases of clockwise arrows are similar). Thus x has idempotent ι0, y has idempotent
ι1, and we remove a crossover arrow from the left end of the horizontal segment corresponding to x,
which we will call vx, to the top end of the vertical segment corresponding to y, which we will call
vy. Adding the crossover arrow adds a new corner path starting at vx for each corner path starting
at vy, and a new corner path ending at vy for each one ending at vx. The corner paths starting at

vy correspond to ρJ ⊗ z terms in ∂̃(y) where the sequence J begins with 2. The new corner paths

starting from vx pass one extra corner, so they correspond to terms (ρ1ρJ) ⊗ z in ∂̃(x). In other

words, we add ρ1∂̃(y) to ∂̃(x) (note that multiplying ∂̃(y) on the left by ρ1 picks out exactly the
terms for which the Reeb chord interval starts with 2). Similarly, each corner path ending at vx
corresponds to a term ρI ⊗x in ∂̃(z) for some z and some I ending in 0, and for each the new corner

path added corresponds to a (ρIρ1) ⊗ y term in ∂̃(z). This is precisely the effect of the change of

basis (over Ã) replacing x with x+ ρ1 ⊗ y.

Now suppose that ϑ′ is obtained from ϑ by an application of (M2), where the crossover arrows slides

between two horizontal or two vertical edges representing generators x and y of Ñ and the crossover
arrow is oriented from the edge representing x to the edge representing y. In this setting, we claim

that Ñ ′ is obtained from Ñ by the change of basis that replaces x with x+ y.

Consider a train track ϑ in T with associated extended type D structure Ñ . Let x and y be

generators of Ñ , and suppose that x and y both have idempotent ι0 (the case where x and y both
have idempotent ι1 is identical). Let vix and vjx be the marked points on the right and left boundary,
respectively, of the square T \ (α ∪ β) associated to x, and let viy and vjy be marked points on the

right and left boundary of the square associated to y. Suppose ϑ′ is obtained by connecting the
horizontal segments by crossover arrows at each end, one from vix to viy and one from vjx to vjy ;
note that this is equivalent to move (M2), since we could equivalently add two cancelling arrows at
one end of the horizontal strands and then slide one to the other end. The effect of this move on
Mϑ is conjugation by Aix,iyAjx,jy . For each corner path out of viy or vjy we add the corresponding
corner path out of vix or vjx , and for each corner path into vix or vjx we add the corresponding
corner path into viy or vjy . Each corner path out of viy or vjy corresponds to a term z in DI(y) for
some I, and the new corner path added corresponds to the same term in DI(x). Thus we add each
term in ∂(y) to ∂(x). Each corner path into vix or vjx corresponds to an x term in DI(z) for some
generator in z and some I, so for each such term we add the term y to DI(z). This is exactly the

effect of the change of basis on Ñ that replaces x with x+y. This shows that move (M2) corresponds

to a change of basis in the extended type D structure Ñ , as claimed. □

3.5. Prospectus for simplification. With these observations in place, our goal is to use the local
moves in Figure 22 and moves (M1) and (M2) to simplify a given train track by systematically
removing crossover arrows. Below, we describe our general strategy for doing this. In individual
examples, it is often easy to simplify the train track by inspection, using the strategy as a guide. In
the next section, we will give a formal algorithm showing that the strategy can always be applied.

One might hope to remove all crossover arrows from the train track, resulting in simply a collection
of immersed curves. This, it turns out, is not always possible; instead, we will remove all arrows
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which do not connect parallel immersed curves. To make sense of this, we must first define what
we mean by parallelism. Associated with a crossover arrow, we have a pair of pointed curves (γ, p)
and (γ′, p′), where p ∈ γ is the tail of the arrow, and p′ ∈ γ′ is its head. We identify π1(T, p) with
π1(T, p

′) by choosing a path from p to p′ which is disjoint from α∪ β, so after choosing orientations
we can view (γ, p) and (γ′, p′) as defining γ, γ′ ∈ π1(T, p).

Definition 3.11. Pointed closed curves (γ, p), (γ, p′) are parallel if there is some δ ∈ π1(T, p) and

k, k′ ∈ Z such that γ = δk, γ′ = δk
′
.

Since k, k′ ∈ Z, this definition does not depend on the choice of orientations. Note that the choice
of basepoints is very important; for example, if p and p′ lie on different components of γ − (α ∪ β),
(γ, p) is usually not parallel to (γ, p′).

Equivalently, assume that γ is in minimal position with respect to α and β. Following the orientation
on γ starting at p determines a (periodic) infinite sequence of signed intersections with α or β, which
we can interpret as an infinite periodic word in two variables and their inverses; two pointed curves
are parallel if there is some choice of orientations for which they determine the same word.

The definition of parallel pointed curves above suggests a local notion of parallelism. This can be
made more precise with the notions of colors and weights that will be introduced in Section 3.6,
but for now we simply say two pointed curves are locally parallel moving in a given direction (either
with the orientations or against the orientations) if the first signed intersection with α ∪ β on each
curve is of the same type. If pointed curves are not locally parallel we say they diverge in the given
direction. When two curves diverge, one curve diverges to the left and one diverges to the right.
In general, curves will be locally parallel for some finite number of intersections and then diverge.
Curves which never diverge are parallel in the sense of Definition 3.11; we will sometimes say such
curves are globally parallel to avoid confusion.

Figure 23. A schematic for removing a single crossover arrow that does not connect globally

parallel curves. In the first case we slide the arrow until the curves diverge and the arrow moves
left to right, and then remove the arrow. In the second case we resolve a crossing and then remove

the two resulting arrows as in the first case.

Suppose a train track consists of a collection of immersed curves and a single crossover arrow. If the
crossover arrow does not connect (globally) parallel curves, then it can be removed using the moves
(M1), (M2), and the local moves from Figure 22. Since the pointed curves connected by the arrow
are not globally parallel, they must eventually diverge in both directions. We begin by sliding the
crossover arrow along the curves in the direction of the orientation. If the curves are locally parallel
in this direction, we slide the arrow across α or β using (M2); repeating this as necessary we slide
the arrow until the two curves diverge. If the arrow goes from the left curve to the right curve when
the curves diverge, it can be realized as a clockwise moving crossover arrow around the corner box
that passes at least one corner of the square; in this case the arrow can be removed using (M1).
If instead the arrow goes from the right curve to the left curve, then we slide the arrow along the
curves in the opposite direction until they diverge. Once again, if the arrow goes from the left curve
to the right curve at this point of divergence, it can be removed using (M1). If the arrow moves
from right to left at both ends, then the curves must cross at some point in between. In this case we
slide the arrow to the intersection and resolve the crossing using the local move (e) from Figure 22.
The resulting train track has two crossover arrows, but when these slide along the curves in opposite
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directions they will be left-to-right, and thus removable, at both ends. This process is summarized
in Figure 24. Note that in the second case case we have removed the original arrow and arrived at
a collection of immersed curves with no crossover arrows, but the immersed curves are not the ones
we started with because a crossing has been resolved.

If a train track contains many crossover arrows, any one of them can be removed by the procedure
above, provided it does not connect parallel curves. It is plausible, then, that we can remove all
crossover arrows that do not connect parallel curves by repeatedly removing one at a time. The key
potential issue here is that when multiple arrows are present, removing one of them may involve
sliding it past others and this may create more arrows. We need to control the number of new
arrows added to ensure that the process of removing arrows one at a time eventually terminates.
To deal with this, we will introduce a bookkeeping tool in the form of a weight system for arrows,
which measure how far an arrow needs to be pushed before the strands diverge. The strategy is to
deal with the easiest to remove arrows (i.e. those with smallest weights) first. These weights will
be infinite for crossover arrows connecting globally parallel curves, and we will show that there is
an inductive algorithm that, at each step, increases the smallest weight (taken over all arrows) by
one while controling the number of arrows added in the process. By compactness of the underlying
curves, after a finite number of steps the only remaining arrows must have infinite weight. Figure
25 shows the outcome of this process applied to the train track in Figure 21(c). Note that when
performing this procedure by hand, it may not be necessary to explicitly specify this weight system.

Figure 24. The running example: On the left is the train track from Figure 21(c). The arrow

passing the top right corner of the square can be removed by an application of (M1); since it is not

the outermost arrow it must first be moved closer to the boundary of the square, which introduces
a new arrow, but this can also be removed by (M1). The arrow passing the bottom left corner

of the square can also be removed by (M1). The arrow parallel to the bottom side of the square

is slid downward, applying (M2) twice before being removed with (M1). The remaining crossover
arrow, which connects two points on an immersed curve at which the curve is self parallel, cannot

be removed.

3.6. Arrow sliding algorithm. We now formalize the strategy suggested above. By Proposition
3.8, we may replace any train track with a configuration of curves and crossover arrows; it remains
to show that all crossover arrows can be eliminated unless they connect parallel (pointed) curves.

It will now be useful to make explicit the handle decomposition associated with the punctured torus
T , in which the corner box corresponds to a 0-handle; see Figure 26. The corner box contains an
arbitrary configuration of embedded arcs (possibly intersecting one another). Because all crossover
arrows in the output of Proposition 3.8 move clockwise, any arrows passing a corner of the corner
box can be immediately removed by move (M1) and we may assume all other arrows lie in one of
the two 1-handles. We previously assumed that the immersed curves consist of purely horizontal
or vertical segments outside the corner box (that is, in the 1-handles), but it will be convenient to
allow these segments to cross each other so that the endpoints of these segments can be ordered
independently on each end of the 1-handle. We collect all crossings into permutation boxes near the
middle of the handle, which we label σ• and σ◦; they contain a braid-like immersed curve diagram.
The boxes labeled A are arrow boxes; they contain parallel curve segments joined by an arbitrary
configuration of crossover arrows. All of the crossover arrows are contained in these arrow boxes.
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σ◦

A

A
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A

z

Figure 25. The anatomy of a train track in T , according to Proposition 3.8: After applying (M1)

moves to remove each of the (clockwise) crossover arrows covering a corner, all of the crossover
arrows can be moved into the 1-handles (these are contained in the four boxes labeled A). Each one

handle contains a permutation box (labelled σ• and σ◦ to agree with the notation for idempotents)

containing an immersed collection of curve segments encoding the permutation. Finally, following
previous sections, the dashed box in the 0-handle corresponds to the corner box.

z

∞

(2, 1)

Figure 26. An equivalent view of the train track from Figure 21(c), where the two crossover

arrows that passed corners have been removed by a change of basis using (M1) moves. Notice
that, in each handle, the arrows and permutations satisfy Lemma 3.15. The crossover arrows have
been labelled by their respective weights; comparing Figure 25 shows that the arrow with finite

depth (w̌, ŵ) = (2, 1) can be removed by applications of the moves (M1) and (M2), while the
infinite depth arrow persists.

Each strand in an arrow box has two directions: towards the corner box and away from the corner
box (toward the permutation box). A specific example is shown in Figure 27.

Weights. Every crossover arrow in an arrow box can be assigned a weight, which is a value in the
set (Z \ {0})2 ∪ {∞}. If the strands on which the arrow starts and ends are globally parallel, the
weight is ∞. Otherwise, the weight is a pair (w̌, ŵ), where the integer w̌ (w-to) is defined as follows.
Follow the strands on which the arrow begins and ends, starting by moving towards the corner box;
at some point, the two strands will diverge (that is, leave the corner box through different edges).
The non-zero integer w̌ indicates that the arrow enters the corner box |w̌| times before the strands
diverge; the sign of w̌ records whether the arrow runs clockwise (+) or counterclockwise (−) around
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the corner box when this happens. The non-zero integer ŵ (w-from) is defined similarly by following
the strands in the opposite direction, initially traveling away from the corner box, until they diverge.

Definition 3.12. The depth of an arrow is defined to be min{|w̌|, |ŵ|}, or ∞ if the weight is ∞. We
will refer to a collection of immersed curves along with a collection of crossover arrows as a curve
configuration; the depth of a curve configuration is the minimum depth of all its crossover arrows,
or ∞ if there are no crossover arrows.

By compactness of the curves, if an arrow has finite depth, then there is an absolute bound on that
depth depending only on the number of strands in the configuration. Our aim is to prove:

Proposition 3.13. A curve configuration of depth m is equivalent to another curve configuration
with the same number of strands and depth no less than m+ 1.

By induction, it will follow that any curve configuration is equivalent to an infinite depth curve
configuration, that is, one in which the only crossover arrows run between parallel strands. Some
additional structures and preliminary lemmas are required before proving Proposition 3.13.

z

nws
wsw
sww
ssw

n

s

w e

Figure 27. A depth 3 coloring in an arrow box;

these strands are (lexicographically) ordered top-
to-bottom since n < w < s for the first letter and,

for the two strands which begin with s, w < s < e
for the second letter.

Colors and orders. We now define a partial order on the
set of strands in an arrow box. To do this, observe that
any strand a in the box lifts to a quasi-geodesic in the
universal cover of T . By following the lift of a in the
direction that initially moves towards the corner box, we
get a ray γa in the cover. More explicitly, the universal
cover of T is a ribbon graph, which we can identify
with a regular neighborhood of a regular 4-valent tree
properly embedded in the hyperbolic plane H2. The
path γa takes in this tree can be described by an infinite
string in the letters n, e, s, w recording which edge of
the corner box the strand exits through each time it
passes through the corner box, as illustrated in Figure
28. By compactness of the curves in the configuration,
this string is clearly periodic. Such a string associated
with a is called the coloring of a. Said another way,
retracting the universal cover of T to the Cayley graph
for π1(T ) ∼= ⟨n, e⟩, these colors corresponds to reduced words in the free group where s = n−1 and
w = e−1.

Informally, the partial ordering on strands is given by a < b if the strand a is on the left relative
to b whenever the strands diverge. Equivalently, a < b means that if we take a crossover arrow
from a to b and push it in the positive direction until the strands diverge, the arrow will point
in a counterclockwise direction when the strands diverge. This can be made precise in two ways.
First, the Gromov boundary of the 4-valent tree in H2 can be naturally identified with a Cantor
set C ⊂ S1 = ∂H2. Since γa does not pass through the initial branch of the tree corresponding
to the arrowbox it starts in, the set of possible endpoints of γa is the intersection of C with an
interval I ⊂ S1 of length 3π/2. Thus there is a natural order on the set of possible endpoints
defined by declaring x < y if we can go counterclockwise from x to y in I. We define a < b
if γa(∞) < γb(∞). This ordering can also be described as a lexicographic order on colorings of
strands, with the understanding that the order on the letters differs in each arrow box and thus in
each position in the word. Each time the ray γa passes through an arrow box and into the corner box,
there are only three ways it can leave the corner box since backtracking along the 1-handle it came
from is not allowed. At each pass through the corner box, we order the choices from rightmost to
leftmost. In terms of letters, no backtracking means that, for instance, the letter n is never followed
by s. There are always three possible choices for the (k + 1)st letter of a coloring, depending on
kth letter, and these three choices inherit a linear ordering from the cyclic ordering (n,w, s, e) by
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removing the disallowed letter. We then define a < b if the color of a is less than the color of b
in the lexicographical order—that is, if the first k letters of the colors agree for some k and the
(k+1)st letter for a is less than the (k+1)st letter for b using the ordering obtained by disallowing
the opposite of the kth letter.

Note that < is a partial order, but a and b have an ordering relationship unless their colors agree;
this happens precisely when the pointed curves starting with the strands a and b are globally parallel
in the sense of Definition 3.11. We can define a sequence of weaker partial orders <m on the set of
strands in an arrow box using the truncation of the coloring of a to the first m letters, which we call
the depth m coloring of a. We say that a <m b if the depthm color of a is less than the depthm color
of m using the lexicographical ordering described above. The partial order <m does not distinguish
between strands for which the rays γa and γb are locally parallel and do not diverge before passing
through the corner box at least m times. It is easy to see that a <m b implies a <m+1 b and that
<m agrees with < for sufficiently large m. By a slight abuse of notation, we write a ≤m b to mean
that a < b or the depth m colors of a and b agree, noting that a ≤m b does not imply a <m b or
a = b.

Ordering crossover arrows in an arrowbox. In an arrowbox, where all strands are parallel, crossover
arrows have a well-defined length, measured by how many strands they cross. A collection of arrows
that point in the same direction can be sorted by length, as follows:

Lemma 3.14. A configuration of crossover arrows that all point up is equivalent to a new configu-
ration in which all the arrows point up and are sorted by length, in the sense that shorter arrows lie
to the left of longer arrows.

Proof. Let n+1 be the total number of strands in the arrowbox. We say a configuration is k-sorted
if all arrows of length n appear on the right, followed by all arrows of length n− 1, then all arrows
of length n− 2, etc. up to arrows of length n− k. The length < n− k part of a configuration is the
configuration obtained by deleting all arrows of length greater or equal to n− k.

Figure 28. Ordering arrows from

left to right, following the steps used
in the proof of Lemma 3.14.

We prove by induction on k that any configuration is equivalent to
a k-sorted configuration whose length < n − k part is the same as
the length < n−k part of the original configuration. The base case
k = 0 is clear, since an arrow of length n slides freely past any other
arrow. For the general case, given a configuration C0, we first apply
the induction hypothesis to find a k-sorted configuration C1 whose
length < n − k part agrees with C0. If there is no arrow of length
n − k − 1, then the configuration is (k + 1)-sorted, and we are done. Otherwise choose the length
n− k− 1 arrow which is farthest to the right among those arrows of C1 which are out of order, and
slide it to the right, past the first arrow it encounters, to obtain a new configuration C2.

If this slide did not create a new arrow (as in Figure 22(a)) C2 is still k sorted and has the same
length < n− k− 1 part as C1. If the slide created a new arrow (as in Figure 22(d)) C2 has the same
length < n− k− 1 part as C1 but is not k-sorted. In this case, we apply the induction hypothesis to
find a configuration C3 which is k-sorted and has the same length < n−k part as C2. (In particular,
the position of the length n − k − 1 arrow has been switched, and we have not added any arrows
of length n− k − 1). Repeating this process, we eventually arrive at a (k + 1)-sorted configuration
whose length < n− k − 1 part agrees with that of C0. □

On a one-handle, the curve configuration consists of two arrowboxes and one permutation box, as
shown in Figure 26. We introduce the notational shorthand [A1, σ, A2] to specify this data. We
say that [A1, σ, A2] and [A′

1, σ
′, A′

2] are equivalent if they represent equivalent train tracks in the
1-handle, in the sense that the (mod 2) counts of paths from any endpoint at one end of the 1-handle
to any endpoint at the other end agree. Note that when the local moves in Figure 22 are applied
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within a 1-handle the resulting configurations are equivalent. In addition to sliding arrows past each
other within each arrow box, as in Lemma 3.14, we can also slide arrows through the permutation
box from one arrow box to the other, and we can resolve a crossing in the permutation box using
the move in Figure 22(e), which changes the permutation σ as well as the arrow boxes.

Our next goal is to show that we can replace any configuration [A1, σ, A2] with an equivalent con-
figuration [A′

1, σ
′, A′

2] in which the crossover arrows are nicely arranged with respect to a chosen
ordering of the strands on each end. Fix an ordering < on the strands in each arrowbox. We say
that the arrow boxes are sorted with respect to < if b < a whenever there is a crossover arrow from
a to b.

Lemma 3.15. Any configuration [A1, σ, A2] in a 1-handle is equivalent to a configuration [A′
1, σ

′, A′
2],

where the arrow boxes A′
1 and A′

2 are sorted with respect to the fixed ordering <. Moreover, if the
original configuration has depth m, then the depth m colorings on the old and new configurations
are the same, and the new configuration has depth ≥ m.

Figure 29. Three equivalent con-

figurations; the pair on the right

both have the form guaranteed by
Lemma 3.15.

We remark that the configuration predicted by Lemma 3.15 is not
unique, as can be seen for the two-strand bundle with a pair of
opposite arrows pictured in Figure 30. In general, when applying
Lemma 3.15 we choose the ordering < to be the color ordering (or,
more precisely, any total ordering on strands which is consistent
with the partial order coming from colors). Note that in the result-
ing configuration, the order may no longer coincide with the color
ordering, since resolving crossings in the permutation box changes the colors of the strands. How-
ever, the last part of the lemma implies that the depth m partial ordering <m is the same for both
configurations.

Proof of Lemma 3.15. We begin by making some simplifications. First, if the original configuration
has depth m, we divide the strands into equivalence classes (bundles). Two strands belong to the
same equivalence class if they run parallel for m−1 steps in both directions. The hypothesis that the
configuration has depth m means that any two strands joined by a crossover arrow are in the same
equivalence class. Crossover arrows from one bundle do not interact with stands from a different
bundle, so we can operate on each bundle separately; thus we assume without loss of generality that
we are operating on a single bundle of strands.

Next, we claim that if the statement holds for one ordering < on the strands in each arrow box, it
holds for any other ordering <′. To see this, note that <′ is related to < by some permutation τ
of the strands. We define Aτ to be the result of permuting the strands according to τ and carrying
the crossover arrows along, so that an arrow from strand i to strand j in A becomes an arrow from
strand τ(i) to strand τ(j) in Aτ ; we refer to Aτ as the conjugation of the arrow box by τ . By
applying a homotopy to the strands in A while fixing their endpoints, we can see that the arrow
box A is equivalent to the arrow box Aτ with a collection of crossings added on either end encoding
the permutation τ on the left and τ−1 on the right. We can absorb the crossings on the inside of
Aτ (that is, toward the permutation box) into the permutation box, ignore the crossings on the
outside of Aτ (toward the end of the 1-handle), and apply the Lemma with < to the remaining
configuration. Undoing the homotopy, we see that this configuration being ordered with respect to
< is equivalent to the original configuration being ordered with respect to <′.

From now on, we will assume that the strands are ordered from top to bottom in A1, and bottom to
top in A2, so that we are aiming to have all arrows in A′

1 pointing up, and all arrows in A′
2 pointing

down. We begin by arranging the bundle so that all crossings between strands are on the right and
all crossover arrows are on the left. It is enough to show that the right-most down arrow can be
moved past every up arrow, and to the other side of the crossings (at the expense of possibly altering
the permutation between strands). An example is shown in Figure 31. Using Lemma 3.14, arrange
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the collection of up arrows so that the shortest arrows appear first. We will induct on the length of
the down arrow immediately to the left of the collection of up arrows.

Suppose that the right-most down arrow has length 1. This arrow slides past all length 1 up arrows,
with the exception of the possibility illustrated in Figure 30, namely, the length 1 down arrow meets
a length 1 up arrow between the same two strands. If this occurs, we replace the pair with a single up
arrow and a new crossing between the strands. Effectively, the down arrow is replaced by a crossing
and this new crossing slides to the right to compose with (and alter) the permutation. Notice that
this will, in general, have a non-trivial effect on the remaining up arrows encountered, however this
can only increase their length (if a starting or ending point is on one of the strands in question) and
not, in particular, switch their direction.

Figure 30. Two equivalent views of the same bundle. The configuration on the left is in the form
desired at the beginning of the algorithm; the configuration on the right shows the result of an

application of the base case in the induction.

If the length 1 down arrow does not meet a length 1 up arrow between the same strands, it slides
freely past all remaining length k > 1 arrows. New arrows may be produced in the process by
composition, but these will have length k − 1 and be (additional) up arrows; compare Figure 31.
Finally, we slide the arrow through the crossings specified by the permutation σ. There are two
cases: Either the arrow remains a down arrow on the other side of these crossings and we are done,
or the arrow switches to an up arrow. In the latter case there must be a crossing between the
strands that caused the swicth, which we resolve (see, for example, Figure 31). The result alters the
permutation but produces an up arrow on the left and a down arrow on the right. This completes
the base case for induction.

Figure 31. Compositions
with short (above) and long
(below) arrows.

Now suppose that the right-most down arrow has length n; our induction
hypothesis is that arrows of length less than n can be moved to the right
of the up arrows. As before, the up arrows collected to the right are
ordered by length. There are three groups in this collection: the short
arrows (those of length less than n), the length n arrows, and the long
arrows (those of length greater than n). Sliding the down arrow past the
short arrows may produce compositions (see Figure 32), but these new
down arrows have length less than n and are dealt with by the induction
hypothesis. To pass the length n arrows, we proceed as in the base case.
That is, the arrow passes freely unless it meets an up arrow joining the
same strands. In this case the arrow is replaced by a crossing, which slides to the right; no new
down arrows are created as the remaining arrows are all long. Finally, if the arrow passes to the long
arrows the arrow proceeds to the permutation (again without producing new down arrows, compare
Figure 32) and we resolve a crossing in the permutation if needed.

Finally, we consider the effect of the operations we have performed on the weights of crossover arrows
and orderings of strands. In the course of the proof, we have added transpositions between strands
belonging to the same bundle. Strands belonging to the same bundle have the same depth m − 1
coloring, and any strand must pass at least once through the corner box before it goes over one of
the new transpositions. Thus the depth m coloring of all strands is unchanged. From this, it follows
that any arrow with depth ≥ m in the old configuration has depth ≥ m in the new configuration as
well. In the course of the proof, we may have created many new crossover arrows, but these all run
between strands in the same bundle, so they have depth ≥ m as well. □
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Proof of Proposition 3.13. The argument is divided into four steps.

Step 1: Remove arrows with w̌ = −m. Order to depth m by applying Lemma 3.15 to each one-
handle, with respect to any extension of the partial ordering ≤m to a total ordering. Since the
original configuration has depth m, the ordering ≤m is unaffected by this operation, and it does not
matter which handle we order first. The new configuration has depth m and is sorted with respect
to ≤m. This means that if we take an arrow with |w̌| = m and push it m steps in the direction
towards the corner box (to where its endpoints diverge), it will remain positively oriented, and thus
will run clockwise around the corner box. Thus any such arrow actually has w̌ = m, and there are
no arrows with w̌ = −m in the new configuration.

Step 2: Remove arrows with w̌ = m. Fix an arrow box. If it contains any arrows with w̌ = m, choose
the one among them which is closest to the corner box. We can remove this arrow by pushing it in
the positive direction until its ends diverge. As we do so, we may encounter other arrows with ends
on one of the strands which our arrow runs between. We claim that these arrows can be pushed
along in front of our chosen arrow (like a pile of snow accumulating in front of a snowplow) without
their ends diverging until the chosen arrow reaches the point where its ends diverge. To see this,
note that every arrow in the arrow box which lies between the corner box and our chosen arrow
has |w̌| > m, so it can be pushed along m steps without its ends diverging. Similarly, arrows which
we encounter in any subsequent arrow box have depth at least m, so they can be pushed m − 1
steps in any direction without diverging. Other arrows which these arrows would have to pass can
likewise be pushed along (they need to move at most m − 1 steps). At the end of the process, we
can remove the chosen arrow, and then just push all other arrows back to where they started. The
net result is that we have removed the chosen arrow without making any other changes to the curve
configuration. Repeating this process removes all arrows with w̌ = m.

Step 3: Remove arrows with ŵ = −m. For a given arrow box A, we will change the configuration
so as to eliminate all arrows with ŵ = −m from A. To do this, we first apply Lemma 3.15 to the
region consisting of the arrow box and its adjacent permutation with ordering ≤m+1. This region is
shown in Figure 33.

σ•

Figure 32. Lemma 3.15
applied to the dashed re-

gion; arrows have |w̌| ≥ m+
1 and |ŵ| ≥ m.

By Lemma 3.15, the depth m colorings in the old and new configurations
agree. Moreover, the depth m + 1 colorings on A are the same in both
configurations. To see this, consider the number of steps a strand leaving
the arrowbox towards the corner box takes to return to it. If it returns after
one step through the corner box, it must re-enter through the right-hand
side of the figure and exit through the left. Since all crossover arrows in the
original arrowbox have |w̌| ≥ m+1 (Steps 1 and 2), any new transpositions
we added in the course of applying the lemma will not change the next m
labels in the coloring. Thus the first m+ 1 labels in the original coloring
will remain unchanged. A similar argument applies if the strand takes two
or more steps to return to the arrowbox.

σ′
•

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
w̌ = m+ 1 or |w̌| > m+ 1

|ŵ| ≥ m

w̌ = m or |w̌| > m

|ŵ| > m

|w̌| ≥ m+ 1

|ŵ| ≥ m

Figure 33. A summary of weights after Lemma 3.15 is applied to the region of the horizontal
strands in the dashed box. Weights outside the dashed box are inherited from the previous step.
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At this point, the configuration is as shown in Figure 34. It is sorted to depth m + 1 on the left,
and to depth m on the right. It follows from Lemma 3.15 that every arrow in the dashed box has
depth greater or equal to m. In fact, every arrow in the dashed box has w̌ ≥ m + 1 on the left of
the permutation, and ŵ ≥ m + 1 on the right. To see this, note that when we apply Lemma 3.15,
the strands in each bundle used in the proof run parallel for m steps to the left. Finally, since the
configuration is sorted, we see that w̌ ̸= −(m+1) for arrows on the left, and w̌ ̸= −m for arrows on
the right. In summary, the weights in the new configuration are as shown in the figure.

In the process of applying Lemma 3.15, we may have created some new arrows with w̌ = m in the
right-hand side of the dashed region. Since the right-hand arrowbox in the 1-handle is sorted to
depth m, these can now be removed just as in Step 2.

Consider the arrow in A which is closest to the corner box. This arrow has |w̌| ≥ m + 1 ≥ 2, so
we can slide it through the corner box to obtain a new configuration. In its old position, the arrow
had |ŵ| ≥ m, so the new arrow will have |w̌| ≥ m + 1. Similarly, the old arrow had w̌ = m + 1 or
|w̌| > m+1, so the new arrow will have ŵ = m or |ŵ| > m. Repeating this operation for each arrow
in A, we eventually arrive at a depth m configuration in which we have slid every arrow out of A.

Summarising our progress to this point: we have removed all arrows with w̌ = −m or ŵ = −m from
our chosen arrowbox A without adding any new arrows with w̌ = −m or ŵ = −m in any of the
other arrowboxes. Therefore, by repeating this sequence of steps on each arrowbox, we arrive at a
depth m configuration of curves in which there are no crossover arrows with w̌ = −m or ŵ = −m.

Step 4: Remove arrows with ŵ = m. There may remain arrows for which ŵ = m; the last step
in the proof of Proposition 3.13 is to show that we can eliminate all arrows of depth m without
changing the rest of the configuration. This proceeds in exactly the same way as in Step 2. Fix a
1-handle, choose a direction → on it, and consider all crossover arrows which have weight w→ = m
when sliding in this direction. All the other arrows in the 1-handle have |w→| ≥ m + 1, so we can
slide the arrows with w→ = m off one at a time without changing the weights of any other arrow,
just as we did in Step 2. Repeating this operation for each 1-handle and each direction, we arrive
at a configuration in which every arrow has depth greater or equal to m+ 1. □

3.7. The proof of Theorem 1.5. We are now positioned to prove the theorem that is the focus
of the section.

Fix a reduced, extendable type D structure and express it as an immersed train track. By Proposition
3.8 this may be expressed as a curve configuration, a schematic for which is given in Figure 26. Then
the algorithm detailed in Section 3.6 ensures that this curve configuration can be simplified to one
in which the only crossover arrows connect parallel curves in the marked torus. Indeed, the original
type D structure is isomorphic as an A-module to the type D structure determined by this simplified
curve configuration. It is convenient to introduce terminology for a train track of this form.

Definition 3.16. A curve-like train track is an A-train track that has the form of immersed curves
together with crossover arrows connecting parallel curves.

Figure 34. Equivalent configura-

tions.

It remains to associate a local system with any collection of parallel
curves that arise. Consider such a collection of n parallel curves, and
notice that we can replace, without loss of generality, any crossings
between two curves with a triple of alternating crossover arrows as
in Figure 35; compare Figure 22(e). Moreover, by applying the move (M2) we may assume that
all of the arrows are contained in the 0-handle and run between curves whose endpoints are on two
different sides of the corner box.
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
Figure 35. Extracting a local system from a bundle of curves, where the generators run from top
to bottom.

Interpreting this configuration as (part of) a train track, we take the segments on each side of the
collection of arrows as generators and form a n × n matrix (xij) where the entry xij is the mod 2
count of oriented paths from xi to xj . The result is a local system of dimension n over the immersed
curve γ carrying the bundle of curves. Note that to define this local system we must choose an
orientation on γ (for the example in Figure 36 we count paths oriented left to right); choosing the
opposite orientation corresponds to inverting the matrix. □

3.8. An aside on type D structures associated with general surfaces. Thus far we have
focused on type D structures associated to the torus algebra A, since these are the objects relevant
for bordered Heegaard Floer homology of manifolds with torus boundary. However, the proof above
applies more broadly to classify extendable type D structures associated with more general surfaces
in terms of immersed curves in those surfaces.

We begin by defining algebras associated to a disk with a single marked point. For a given positive
integer m we can associate a quiver with the marked disk: there are m vertices {0, . . . ,m−1} placed
on the boundary of the disk and m edges {ρ0, . . . , ρm−1} oriented clockwise along the boundary.
We assume that the marked point is arbitrarily close to the boundary of the disk and is next to the
edge ρ0. Fix the target of ρi to be the point i; below it will be helpful to distinguish between the
vertex i in the quiver and the associated idempotent ιi in the path algebra of the quiver. We follow
the usual convention of writing ρI for the product associated with a cyclically-ordered string I from
{1, 2 . . . ,m − 1, 0}. The path algebra of this quiver determines two algebras that are of interest to

us: B̃ is the result of quotienting by ρI = 0 for any string I containing more than one 0, while B is

the result of quotienting by ρI = 0 for any string I containing at least one 0. The algebra B̃ contains
a distinguished central element U =

∑
|I|=m ρI .

z z

Figure 36. Equivalent train tracks in the
marked disk, according to Lemma 3.9. Here

m = 12 and there is one primary vertex for
each idempotent.

Now a type D structure over B may be defined as in Sec-
tion 2.1. In the same way, we can define the notion of

an extension, which will be a module over B̃. These (ex-
tended) type D structures can be encoded by train tracks
in the marked disk, where generators with idempotent ιi
give rise to primary switches on the boundary of the disk
in a neighborhood of the vertex i and terms in the differ-
ential are encoded by paths through the disk. An example
is shown in Figure 37 (where, as usual, two-way track seg-
ments are recorded as unoriented edges). As such, in this
setting, the type D structure and a choice of extension for
it can be represented by a matrix M over F[U ]/U2 satis-
fying the hypotheses of Lemma 3.9, and hence may be expressed as M = PM̄P−1 where P is a
composition of elementary matrices of the form AUi,j or of the form Ai,j with i < j, and M is as in
Proposition 3.8. Following the proof of Proposition 3.8, this new form may be interpreted in terms
of the associated train tracks in the disk as follows: up to equivalence, all train tracks for which
M2 = UI2n can be represented by (1) a collection of unoriented track segments connecting primary
switches in the boundary of the disk; and (2) a collection of clockwise-moving crossover arrows con-
fined to a small collar neighborhood of the boundary of the disk. For the example in Figure 37, the
reader can check that P = AU6,1A2,5 (where determining M and M̄ is left as an exercise), leading to
the train track on the right of the figure.



BORDERED FLOER HOMOLOGY VIA IMMERSED CURVES 39

For m = 4g and a specified handle attachment of 2g 1-handles, we can define an algebra associated
with a punctured genus g surface. We denote this algebra by AF , where F is the surface along with
the specified handle decomposition. Let ιi and ιj be idempotents of B corresponding to points i < j
in the boundary of the disk. Adding a 1-handle [−ϵ, ϵ]× I to the disk so that (0, 0) is identified with
i and (0, 1) is identified with j gives rise to a modified quiver: the points i and j are identified to
form a quotient graph, but new paths are disallowed by setting ρiρj+1 = 0, and ρjρi+1 = 0. The
new algebra AF is a subalgebra of B obtained by replacing the idempotents ιi and ιj with the single
idempotent ιi + ιj . In other words: the points of the relevant idempotents are identified, while any

and all possible new paths created are set to zero. The extended algebra ÃF is defined analogously

as a quotient of B̃. (The reader may recognize the geometric significance of the idempotent subring
of AF in general: the Grothendieck group of the appropriate associated category of modules is
completely determined by this ring; see [29].)

Note that when m = 4 and F is the punctured torus, with 1-handles identifying idempotents ι0 with
ι2 and ι1 with ι3, the algebra AF defined above coincides with the torus algebra A as defined in

Section 2.1, and ÃF agrees with Ã. In this case we identify ι• = ι0 + ι2 and ι◦ = ι1 + ι3, and the
relations from the 1-handle attachments account for the familiar ρ3ρ2 = ρ2ρ1 = 0 in the definition
of A. When m = 4g and F is a punctured genus g surface, the algebra AF is the one-moving-strand
part of the strand algebra associated to F in [39]. More specifically, the algebra B is the algebra
A(m, 1) defined in [39, Section 3.1] and AF coincides with A(Z,−g+1) defined in [39, Section 3.2],
where Z is a pointed matched circle representing the given handle decomposition of F .

In fact, we need not restrict to surfaces with one zero handle and one boundary component: we

can construct algebras AF and ÃF for other surfaces F admitting a prescribed (finite) 0- and 1-
handle decomposition, whenever each 0-handle carries a marked point (i.e. there is a distinguished
ρ0 for each 0-handle). We begin with the algebra ⊕ni=1Bi associated with the collection of 0-handles,
that is, the path algebra associated with a disjoint union of n cycles. Each 1-handle attachment
identifies some point ia (corresponding to ιai ∈ Ba) with ib (corresponding to ιbi ∈ Bb) and gives rise
to a quotient graph; this quiver has new relations imposed by ρai ρ

b
j+1 = 0 and ρbjρ

a
i = 0 (just as

in the case of a single 0-handle). Having attached all of the handles in the description of F , and
appropriately quotienting the associated quiver at each stage, we arrive at an algebra AF (see Figure

38 for an explicit example). A similar construction gives ÃF . There is are close ties here with work
of Zarev; see in particular the examples considered in [52, Section 9].

To describe an extendable type D structure over AF for general surface F with n 0-handles, we can
first describe a type D structure over ⊕ni=1Bi: the underlying vector space ⊕ni=1V

i has left-action
by the idempotents I(⊕ni=1Bi) = ⊕ni=1I(Bi) so that V i is a type D structure associated with the
ith 0-handle. The essential observation is that any quotient identifying ia with ib in the quiver
is compatible with a left-action of the new idempotent subring where ιai and ιbi are replaced by
ιai + ιbi , and hence gives a well-defined type D structure over the (subalgebra) associated with the
quotient quiver. Notice that the matrices M i describing this type D structure are data that remains
associated with the 0-handles in the decomposition of F . In particular, while the type D structures
change (the underlying vector space changes, as well as the algebra), the Mi are unchanged at
every stage. We emphasise that, in the course of this construction, the relevant type D structures
are not obtained by a sequence of quotients as differential modules, rather, the vector spaces are
quotiented in a way compatible with a change to the idempotent subring. Moreover, such quotients
are only possible when dim(ιai V

a) and dim(ιbiV
b) agree. Geometrically, the train tracks representing

the type D-structures in each 0-handle extend over the 1-handles as parallel lines connecting the
relevant generators in the quotient; see Figure 38. This is the key observation required in order to
establish Theorem 3.17, below, treating type D structures associated with general surfaces.

We note that the move (M1), along with the local moves for train tracks, apply in precisely the same
way to train tracks in a marked disk, where the role of the corners of the square are played by points
on the boundary of the disk between two adjacent quiver vertices (and outside of the neighborhoods
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(1,0)
0

B̃(0,1) B̃(1,1)

B̃(0,0) B̃(1,0)

ρai ρbj
=⇒ ρai ρ

b
j = 0

= ρa0

Figure 37. Three (related) extended type D structures: over B̃ (lower left) where m = 4 has been

omitted from the notation; over Ã (lower right); and over the algebra described by the quiver in
the top left (upper right). The associated surface in this last example is made up of four 0-handles

and six 1-handles (it should be viewed in the cylinder S1 × R), and each 1-handle attachment

gives rise to a quotient of the quiver, with relations as described by the key in the shaded box.

The end result is a subalgebra of B̃(0,0) ⊕ B̃(1,0) ⊕ B̃(0,1) ⊕ B̃(1,1). This last example covers the

example associated with the torus. The reader can check that the matrices underlying the first

two examples are identical, while the last example requires 4 matrices (one for each 0-handle).

of these vertices in which all primary switches lie). Thus by Proposition 3.8 the train tracks within
each 0-handle can be represented by arcs with clockwise moving crossover arrows, and any crossover
arrows passing a corner can be immediately removed up to a change of basis in the corresponding
module. These steps make sense for modules over B before passing to the quotient AF (i.e. before
attaching 1-handles). In contrast, the move (M2) does not make sense without 1-handles, but once
we pass to train tracks representing type D structures over AF the obvious analog of (M2) is allowed:
up to an appropriate change of basis, we may slide a crossover arrow near the boundary of a 0-handle
across a 1-handle into the 0-handle on the other end.

We conclude by observing that the arrow sliding algorithm described in Section 3.6 applies to train
tracks in arbitrary surfaces. After removing crossover arrows which pass a corner of a 0-handle, all
crossover arrows can be pushed into a 1-handle. The arrow sliding algorithm takes place primarily
in one 1-handle at a time, where we rearrange a depth m configuration of arrows in that 1-handle
to remove all depth m arrows. The inductive step follows from repeating this procedure in each
1-handle. The only difference for general surfaces is that the colors of strands can not be written
as words in the letters {n, e, s, w}, but rather colors encode a path through the Cayley graph for
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π1(F ). An ordering on colors, and thus a partial ordering on strands, can still be defined as before.
So, while we are primarily interested in the torus algebra for this work, we have in fact shown:

Theorem 3.17. Let AF be the algebra associated with a marked surface F equipped with a decom-
position into finitely many 0- and 1-handles. Then any extendable type D structure over AF may be
realised as a collection of immersed curves in F decorated with local systems.

This recovers a result due to Haiden, Katzarkov, and Kontsevitch [18] via rather different techniques.

4. Decorated immersed curves as type D structures

The previous section shows how an extended type D structure over Ã can be interpreted as a
collection of immersed curves decorated by local systems in the marked torus T . The goal of this
section is to show that this in fact gives a bijection between the set of homotopy equivalence classes
of extendable type D structures and the set of decorated immersed multicurves in the marked torus.
Moreover, we show that the pairing on extendable type D structures coming from the box tensor
product is given by the intersection Floer homology of the corresponding curves.

4.1. Intersection Floer homology. In [1], Abouzaid gave a combinatorial definition of the inter-
section Floer homology of immersed curves in a symplectic surface (cf. [11] for a detailed discussion
in the embedded case, and section 2 of [5] for a recent summary). We will use a slight variation on
this construction: rather than working with coefficients in a Novikov ring, as is standard in sym-
plectic geometry, we use the notion of an admissible diagram, which was introduced by Ozsváth and
Szabó [43] in the context of Heegaard Floer homology (see also Kotelskiy [31]).

Let S be a (possibly noncompact) orientable surface with χ(S) < 0, so the universal cover S̃ is
homeomorphic to R2. A curve γ in S is either an immersed closed curve γ : S1 → S that represents
a nontrivial element of π1(S) (a loop), or a properly immersed arc γ : R → S (an arc). If γ is an arc

it lifts to an arc γ̃ in S̃. If γ is a loop, we consider the composition γ ◦ p : R → S, where p : R → S1

is the covering map. This map lifts to an arc in S̃, which we again denote by γ̃. Of course, γ̃
is not unique in either case, but any two such lifts are related by the action of the group of deck

transformations on S̃.

Definition 4.1. If γ̃ is embedded, we say that γ is unobstructed.

By [5, Lemma 2.2] this definition is equivalent to γ having no immersed fishtail. More generally, we
define a multicurve γ, to be a finite union of curves γi, and say that γ is unobstructed if each γi is.

If γ is a loop, we fix a basepoint ∗ ∈ S which in the image of γ but not a double point, and consider
the covering space Sγ → S defined by π1(Sγ , ∗′) = ⟨γ⟩ ⊂ π1(S, ∗). Let γ be the lift of γ to Sγ that
passes though the basepoint ∗′. It is easy to see that Sγ ∼= S1 × R, and that γ is unobstructed if
and only if γ is embedded.

Definition 4.2. Loops γ, γ′ ⊂ S are commensurable if there is an immersed loop δ ⊂ S and integers
n, n′ such that γ is freely homotopic to δn and γ′ is freely homotopic to δn

′
.

For curves in the marked torus T , the condition that two curves are commensurable is equivalent to
them being globally parallel, in the sense of Definition 3.11. Group theoretically, this condition can
be described as follows. As above, we assume our basepoint ∗ lies on γ, so γ determines an element
γ ∈ π1(S). The free homotopy class of γ′ determines a conjugacy class {xγ′x−1} ⊂ π1(S). Then γ
and γ′ are commensurable if and only if there is a cyclic subgroup C ⊂ π1(S) containing both γ and
xγ′x−1 for some x.
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Lemma 4.3. Suppose S is noncompact so that π1(S) is free. If γ, γ′ are not commensurable, any
lift of γ′ to Sγ is an arc. If they are commensurable, there is precisely one lift of γ′ to Sγ that is a
loop.

Proof. The different lifts of γ′ to Sγ correspond to conjugates xγ′x−1 of γ′ in the free group π1(S).
The element xγ′x−1 lifts to a loop if and only if some power of xγ′x−1 is contained in ⟨γ⟩, i.e.
x(γ′)nx−1 = γm for some n,m. Consider the subgroup G = ⟨xγ′x−1, γ⟩ ⊂ π1(S). By hypothesis,
π1(S) is free, so G is free as well; G contains a nontrivial central element (namely x(γ′)nx−1 = γm)
so it must be free of rank 1. Hence γ and γ′ are commensurable if and only if some lift of γ′ is a
loop.

Now suppose that γ′ and γ are commensurable. After replacing γ′ with xγ′x−1, we may assume
that γ′ and γ belong to the same cyclic subgroup of π1(S), so there is some δ ∈ π1(S) with γ = δr,
γ′ = δs. Saying that γ′ has a different lift that is a loop means there is some w ∈ π1(S) with
wγ′w−1 ̸= γ′ and w(γ′)nw−1 = γm, or equivalently, wδsnw−1 = δrm.

Suppose this is the case, and consider the groups H = ⟨w, δ⟩ ⊂ π1(S), and F2, the free group
generated by w and δ. H is free, and there is an obvious surjection π : F2 → H. By Grushko’s
theorem, the rank of H is ≤ 2, and if it is equal to 2, π is an isomorphism. Now w and δ satisfy the
nontrivial relation wδsnw−1 = δrm in H, so π cannot be an isomorphism. Thus H is free of rank 1,
so it is abelian. But in this case w commutes with δ, and thus also with γ′. This contradicts our
assumption that wγ′w−1 ̸= γ′. We conclude that no other lift of γ′ is a loop. □

Suppose that γ, γ′ are unobstructed curves and that x, y ∈ γ∩γ′. Let π2(x, y) be the set of homotopy
classes of bigons from x to y.

Lemma 4.4. If γ and γ′ are incommensurable, π2(x, y) is either empty or a single point. If γ and
γ′ are commensurable, π2(x, y) is either empty or a Z-torsor.

Proof. The set π2(x, y) is either empty or a torsor over π2(x, x). The latter group can be computed
from the long exact sequence

π2(S) → π2(x, x) → π1(γ)⊕ π1(γ
′)

α−→ π1(S),

where α(m,n) = γm(γ′)n. (Note that this is only a map of sets, not a homomorphism.) We have
π2(S) = 0, and γ, γ′ represent nontrivial elements of π1(S), so α

−1(1) is either the identity element
in π1(γ)⊕ π1(γ

′) (if γ and γ′ are incommensurable), or isomorphic to Z. □

Now we are ready to discuss the Floer chain complex. Suppose that γ = ∪γi and γ′ = ∪γ′j are
unobstructed transversally intersecting multicurves and that every component of γ is a loop. As
above, if x, y ∈ γ ∩ γ′, we let π2(x, y) be the set of homotopy classes of bigons from x to y, where
a bigon from x to y is a continuous map ψ : D2 → S such that ψ(−i) = x, ψ(i) = y, the restriction
of ψ to the right half of S1 factors through some γi, and its restriction to the left half of S1 factors
through some γ′j . It is immediate from the definition that π2(x, y) = ∅ unless x and y belong to the
same γi and γ

′
j .

Roughly speaking, we want the Floer chain complex CF (γ,γ′) to be the F vector space generated
by γ∩γ′, with differential given by dx =

∑
y n(x, y)y, where n(x, y) is the count of immersed bigons

from x to y, just as in Section 2.5. Now π2(x, y) = ∅ unless x and y both belong to the same γi and
the same γ′j , so

CF (γ,γ′) ∼=
⊕
i,j

CF (γi, γ
′
j).

Hence in what follows we can restrict attention to the case where γ = γ and γ′ = γ′ are individual
curves.
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The fact that d2 = 0 when γ and γ′ are unobstructed follows from a combinatorial count of disks
exactly as in [1, Lemma 2.11]; Figure 39 illustrates the idea of the proof.

x yz

x yz x yz

Figure 38. Local pictures illustrating why d2 = 0: Either d2(x) = 0 owing to the fact that 4

bigons must be present (as illustrated on the left), or there must be a cusp in one of the γi (as

illustrated on the right).

There are a few subtleties to consider. The first is the issue of local systems. Abstractly, a local
system on a curve γ assigns a vector space Vx to each point in the domain of γ, together with an
isomorphism ϕα : Vx → Vy for each homotopy class of paths α from x to y, with the property that
ϕα◦α′ = ϕα ◦ ϕα′ . If γ is an arc, two local systems on γ are isomorphic if and only if they have the
same dimension. If γ is an oriented loop, a local system on γ is determined up to isomorphism by
k = dimVx and a matrix A ∈ GLk(F) (well defined up to conjugacy) that represents the monodromy
ϕα : Vx → Vx where α is a generator of π1(S

1, x). We represent γ equipped with a local system as
above by the triple γ = (γ, k,A), where γ carries an orientation given by our choice of generator for
π1. Changing the orientation on γ has the effect of replacing A with A−1.

If γ,γ′ are curves as above equipped with local systems (V, ϕ) and (V ′, ϕ′), then we define

CF (γ,γ′) =
⊕

x∈γ∩γ′

Vx ⊗ V ′
x.

An immersed bigon ψ ∈ π2(x, y) induces a map dψ : Vx ⊗ V ′
x → Vy ⊗ V ′

y given by dψ = ϕψ1
⊗ ϕψ2

where ψ1 and ψ2 are the sides of ψ running along γ and γ′ respectively. Both ψ1 and ψ2 are oriented
to point from x to y. The differential on CF (γ,γ′) is given by d =

∑
ψ dψ, where the sum runs over

all immersed bigons in S. (A more common convention is to use CF (γ,γ′) =
⊕

x∈γ∩γ′ Hom(Vx, V
′
x).

The two are related by replacing γ′ = (γ′, k, A) with (γ′, k, (A−1)T ).)

The second issue we must address is the finiteness of this sum. The definition we have given differs
from the standard one in symplectic geometry [1], which uses coefficients in a Novikov ring and keeps
track of the symplectic area of the disks. Since we are working with coefficients in F rather than
the Novikov ring, we must ensure that there are only finitely many immersed bigons in order for the
sum in the definition to make sense. If γ and γ′ are incommensurable, this is automatic: there are
finitely many x, y ∈ γ ∩ γ′; π2(x, y) contains either 0 or 1 representative, and each homotopy class
contains at most one immersed bigon.

If γ and γ′ are commensurable, we must analyze the situation more closely. Since the curves are
commensurable, α = γn is homotopic to α′ = γ′m for some n,m ∈ Z. Since they are unobstructed,
α and α′ lift to homotopic simple closed curves α̃ and α̃′ in the covering space Sα.

The following lemma is well-known, but since the proof is short, we give it here.

Lemma 4.5. Suppose that γ is a loop, that p : S → S is a covering map, and that γ : S1 → S is a
lift of γ to S. Then CF (γ, γ′) ∼= CF (γ, p−1(γ′)).
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Proof. Since γ is a lift of γ, p gives a bijection between γ ∩ p−1(γ′) and γ ∩ γ′. Hence the two
complexes have the same generators.

Suppose ψ : D2 → S is an immersed disk from x to y, and let x and y be the preimage of x and y
in γ. Since D2 is simply connected, ψ lifts to an immersion ψ : D2 → S with ψ(−i) = x. The side
of ψ running along γ lifts to γ, so ψ(i) = y, and ψ is an immersed disk from x to y. Conversely, if
ψ is an immersed disk from x to y, p ◦ ψ is an immersed disk from x to y. It follows that the two
complexes have the same differentials as well. □

Corollary 4.6. Suppose γ and γ′ are commensurable, and α, α′ are as above. Then the sum ap-
pearing in the boundary operator for CF (γ, γ′) is finite if and only if the sum for CF (α̃, α̃′) is.

Proof. We apply the lemma to the cover pγ : Sγ → S. By Lemma 4.3, p−1
γ (γ′) contains finitely

many arcs β′
1, . . . , β

′
k intersecting γ, along with a single loop β′

0 that is commensurable with γ, so

CF (γ, γ′) ∼=
k⊕
i=0

CF (γ, β′
i).

If γn = γ′m then β0 = γn in π1(Sγ) ∼= Z. Applying the lemma again, this time to the n-fold-cyclic

cover p : Sα → Sγ we see that CF (γ, β0) ∼= CF (p−1(γ), β0) = CF (α̃, α̃′). For i > 0, βi is an arc,
so the differential in the complex CF (γ, βi) is a finite sum. Hence the differential on CF (γ, γ′) is
well-defined if and only if the differential on CF (α̃, α̃′) is. □

We define Pα,α′ to be the periodic domain bounded by α and α′, that is, the domain of the compactly
supported 2-chain in Sα which is bounded by α̃ − α̃′. If z ∈ Sα − α̃ − α̃′, we let nz(Pα,α′) be the
multiplicity of Pα,α′ at z.

Definition 4.7. We say that γ and γ′ are in admissible position if Pα,α′ has both positive and
negative multiplicities.

Since α̃ and α̃′ are transverse embedded curves in S1 ×R, γ and γ′ are in admissible position if and
only if α and α′ intersect.

Suppose that γ and γ′ are in admissible position, that x, y ∈ α ∩ α′, and that ψ1, ψ2 ∈ π2(x, y).
If D(ψi) is the domain associated with ψ, then D(ψ1) = D(ψ2) + kPα,α′ for some k ∈ Z. Since
Pα,α′ has both positive and negative multiplicities, there are only finitely many values of k for which
all the multiplicities of D(ψ1) are positive, and hence only finitely many terms in the sum for the
differential on CF (α, α′). Hence if γ and γ′ are in admissible position, CF (γ, γ′) is well-defined.

More generally, if γ = ∪γi and γ′ = ∪γ′
j are unobstructed immersed curves equipped with local

systems, we say γ and γ′ are in admissible position if γi and γ
′
j are in admissible position for each

i and j. If this is the case, the Floer chain complex CF (γ,γ′) is well defined. We will now explain
how to compute its homology HF (γ,γ′). We start with an elementary lemma, whose proof is left
to the reader.

Lemma 4.8. If γ1 = (γ, k1, A1) and γ2 = (γ, k2, A2), then CF (γ1 ∪ γ2,γ
′) = CF (γ3,γ

′), where
γ3 = (γ, k1 + k2, A1 ⊕ A2). Similarly, if γ1 = (γ1, k, A), where γ1 is the n-fold cover of γ, then
CF (γ1,γ

′) = CF (γ,γ′), where γ = (γ, nk,A′) and A′ is a block matrix of the form

(2)


0 0 0 A
Ik 0 0 0
0 Ik 0 0
0 0 Ik 0


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Next, we consider the effect of varying a loop γ by a homotopy. Fix some γ′; we say that the
homotopy γt is good if for each t ∈ {0, 1}, γt is unobstructed and the pair (γt, γ

′) is admissible. If
(V0, ϕ0) is a local system on γ0, the pullback to S1 × [0, 1] induces a local system (V1, ϕ1) on γ1.

Theorem 4.9. Suppose that γ0,γ
′ are unobstructed curves equipped with local systems. If γt is a

good homotopy from γ0 to γ1, then HF (γ0,γ
′) ∼= HF (γ1,γ

′).

Proof. This is a standard result in the symplectic context, where we work with area preserving
isotopies and coefficients in the Novikov ring. For a proof in this setting, see [1, Section 4] or [5,
Lemma 2.12]. We sketch the necessary changes to make the proof work in the context of admissible
diagrams. As in the proof of Proposition 4.1 in [1], we first pass to the cover Sγ0 , and thus reduce to
the case where γ0 and γ1 are embedded. After splitting the preimage of γ′ into separate components
and passing to a further cover, as in the proof of Corollary 4.6, we can further assume that γ′ is
either (a) incommensurable with γ0 or (b) embedded and isotopic to γ0. Case (b) is actually a
special case of the invariance of sutured Floer homology [30], since the sutured Heegaard diagrams
(S1× [0, 1], γ0, γ

′) and (S1× [0, 1], γ1, γ
′) are admissible sutured Heegaard diagrams representing the

same sutured manifold. Henceforth we assume we are in case (a).

By breaking the isotopy γt into a sequence of smaller isotopies, as in [1, Lemma 4.2], we may
assume that γ0 and γ1 are parallel curves intersecting in two points θ1 and θ2. Then a (combi-
natorially defined) count of immersed triangles corresponding to composition with θ1 and θ2 gives
chain maps f : CF (γ0, γ

′) → CF (γ1, γ
′) and g : CF (γ1, γ

′) → CF (γ2, γ
′), where γ2 is a small trans-

late of γ0 intersecting it in two points. Finally, the associativity relation (obtained by counting
immersed quadrilaterals) ensures that f ◦ g is homotopic to the natural map identifying CF (γ0, γ

′)
with CF (γ2, γ

′).

This argument carries over largely unchanged to the admissible setting, but we must check that the
counts of immersed triangles and quadrilaterals used to define the chain maps and homotopies are
finite. We discuss the case of quadrilaterals; the argument for triangles is very similar. In order
to check that there are only finitely many homotopy classes that contribute to the sum, we must
show that for a given N , there are only finitely many periodic domains bounded by γ0, γ1, γ2 and
γ′ whose multiplicities are all between −N and N . To do this, it suffices to find a basis Pi for the
space of periodic domains and points z±i such that nz+i

(Pi) > 0, nz−i
(Pi) < 0, and nz±i

(Pj) = 0 for

i ̸= j. In this case we say the points separate the periodic domains. Since we are in case (a) γ0 and
γ′ are incommensurable, and all periodic domains are bounded by γ0, γ1, and γ2. By choosing γ2
appropriately, we can assume the configuration is as shown in Figure 40. The periodic domains P1

and P2 form a basis and are separated by the points shown in the figure. □

P1 P2

Figure 39. The curves γ0, γ1, γ2 in the cylinder Sγ0 , together with a basis of periodic domains.

Recall that if γ, γ′ are essential immersed curves in S, their intersection number is the minimal
geometric intersection number between transverse curves γ̂, γ̂′ that are homotopic to γ, γ′. By a
theorem of Freedman, Hass, and Scott [13], this minimal number is realized when γ̂, γ̂′ are shortest
length geodesics in the free homotopy classes of γ, γ′. Similarly, if γ is primitive, the self-intersection
number i(γ) is the minimal number of self-intersections among immersed curves homotopic to γ. It
is realized by the number of self-intersections of the shortest geodesic representing γ.
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Corollary 4.10. Suppose γ = (γ, k,A) and γ′ = (γ′, k′, A′) are primitive unobstructed immersed
curves equipped with local systems. If γ and γ′ are incommensurable, then

dimHF (γ,γ′) = kk′ · i(γ, γ′).
If γ′ = γ−1, then

dimHF (γ,γ′) = 2kk′ · i(γ) + 2 dim(kerΦA,A′),

where ΦA,A′ is the endomorphism of Fk ⊗ Fk′ given by ΦA,A′ = I ⊗ I + A⊗ A′. As a consequence,
HF (γ,γ) is always a nontrivial.

If γ, γ′ are commensurable but not primitive, we can use Lemma 4.8 to reduce to the case where we
have two parallel primitive curves. Hence the corollary enables us to compute HF (γ, γ′) for any two
decorated curves γ, γ′.

Proof. Let γ̂, γ̂′ be shortest geodesics homotopic to γ, γ′. Since γ and γ′ are primitive, we can
assume they are either incommensurable or γ̂′ = γ̂±1. In the first case, CF (γ,γ′) ∼= CF (γ̂, γ̂′), and
CF (γ̂, γ̂′) has kk′ · i(γ, γ′) generators. To understand the differential, we consider the cover Sγ . By
section 3 of [13], each component of p−1

γ (γ̂′) intersects the lift of γ̂ in either 0 or 1 point. Hence

π2(x, y) = 0 for any two distinct generators of CF (γ̂, γ̂′). This proves the first statement.

If γ′ is homotopic to γ−1, HF (γ,γ′) ∼= HF (γ̂,γ′′), where γ′′ is a small translate of γ̂ intersecting it
in two points. In this case p−1

γ (γ′′) consists of some arcs and a single loop that is a small translate

of γ̂ and intersects it in two points. Since γ′′ is a small translate of γ̂, as before, each of the arcs
intersects γ̂ in a single point. There are two such intersections for each self-intersection of γ̂, so
in total these contribute 2kk′ · i(γ) generators, and no differential. The final part of the chain

complex is the summand CF (γ̂, γ̂) for which there are two intersection points, each contributing

Hom(V ′, V ) ∼= Fk ⊗ Fk′ to the set of generators, and two embedded disks. The differential in this
complex is given by ΦA,A′ , so the dimension of its homology is 2 dim(kerΦA,A′).

For the final claim, reverse the orientation on γ to get

HF ((γ, k,A), (γ, k,A)) = HF ((γ, k,A), (γ−1, k, A′))

where A′ = (A−1)T . The operator ΦA,A′ can be viewed as a map from End(Fk) to itself. Thinking
of End(Fk) as the space of k× k matrices with entries in F, we have ΦA,A′(X) = AXA−1 +X. The
k×k identity matrix is always in the kernel of Φ, so HF ((γ, k,A), (γ, k,A)) is always nontrivial. □

4.2. From Type D structures to curves. We now define a set C, which is the target of the invari-

ant ĤF (M). Consider collections of finitely many oriented immersed unobstructed loops decorated
with local systems in the marked torus; recall that by marked torus we mean the punctured torus T
with a choice of parametrizing curves α and β. Each decorated curve is a triple (γ, k,A), where γ is
an oriented unobstructed immersed curve, k is a positive integer, and A is a similarity class of k× k
matrices over F. As discussed earlier, the pair (k,A) determines a k-dimensional local system on γ.

We impose an equivalence relation on collections of such curves, generated by the following relations,
which can be applied to any subset of a collection:

• If γ is homotopic to γ′, (γ, k,A) is equivalent to (γ′, k, A).
• (γ, k,A) is equivalent to (−γ, k,A−1), where −γ denotes γ with the orientation reversed.
• The pair {(γ, k1, A1), (γ, k2, A2)} is equivalent to the single curve (γ, k1 + k2, A1 ⊕A2).
• If γ is homotopic to (γ′)m then (γ, k,A) is equivalent to (γ′,mk,A′), where A′ is a block

matrix of the form shown in equation (2).

We define C to be the set of equivalence classes. Each equivalence class contains a representative
which is minimal in the sense that the underlying curves are all primitive and no two of them are
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homotopic. This representative is unique up to orientation reversal, conjugation of the monodromy,
and homotopy of the underlying curves.

Given γ1,γ2 ∈ C, we define their pairing to be ⟨γ1,γ2⟩ = HF (γ1, r(γ2)), where r denotes the
orientation reversing diffeomorphism of the marked torus that exchanges α and −β. Lemma 4.8 and
Theorem 4.9 imply that the pairing is well-defined.

Let D denote the set of extendable type D structures over A, up to homotopy equivalence. The
set D is equipped with a pairing given by the box tensor product: if N1, N2 ∈ D, their pairing is
⟨N1, N2⟩ = NA

1 ⊠N2, where N
A
1 is the A∞ module corresponding to N1 under the duality described

in Section 2.3 (see Remark 2.3).

The main result of this section is:

Theorem 4.11. There is a bijection f : D → C, with inverse g : C → D, satisfying ⟨N1, N2⟩ ≃
⟨f(N1), f(N2)⟩ and, equivalently, ⟨γ1, γ2⟩ ≃ ⟨g(γ1), g(γ2)⟩.

We first define the inverse g : C → D. Given a decorated immersed curve γ = (γ, k,A) in the
marked torus, we construct a train track by replacing γ with k parallel copies of γ, writing A as a
product of elementary matrices P1 · · ·Pℓ, and adding a crossover arrow between copies of γ for each
elementary matrix, where an elementary matrix of type Aij corresponds to an arrow connecting
the ith copy of γ to the jth copy of γ and the arrows corresponding to Pℓ, Pℓ−1, . . . , P1 appear in
order according to the orientation of γ. We assume that γ is homotoped so that it has minimal
intersection with α ∪ β, and we take care that no crossover arrows intersect α or β. The result

is a valid reduced train track; this corresponds to an extended type D structure Ñ , which has an
underlying (extendable) type D structure N . We define g(γ) = N . In doing so, we made some
choices: namely a matrix representing the similarity class A and an elementary decomposition of
that matrix. Changing either choice corresponds to sliding crossover arrows around γ by moves
which preserve the homotopy equivalence class of the corresponding extended type D module; thus
g is well-defined. Finally, if γ =

⋃
γi is a union of decorated curves, we define g(γ) =

⊕
g(γi).

Next, we consider the effect of g on the pairing. Recall that if ϑ is a curve-like train track (as in
Definition 3.16), there is an associated local system (V, ϕ) on the underlying curve γ. If x is a point
on γ, Vx is the F vector space spanned by vectors ep for p ∈ Sx := ϑ ∩ ℓx, where ℓx is a small
arc transverse to γ and passing through x. If α is an arc from x to y along γ, then ϕα : Vx → Vy
is given by ϕα(ep) =

∑
npqeq, where npq counts the number of paths on from p to q on θi which

project to the path α on γ. Applying this procedure to the train track used to define g(γ) returns
the decorated curve γ.

Now suppose that ϑ1,ϑ2 are two valid reduced train tracks, and consider the chain complex
C(ϑ1,ϑ2), defined in Section 3.2. If A(ϑ1) and D(ϑ2) are in admissible position, C(ϑ1,ϑ2) is
their intersection Floer chain complex. Note that A(ϑ1) is isotopic to ϑ1, while D(ϑ2) = r(A(ϑ2))
is isotopic to r(ϑ2).

Lemma 4.12. Suppose that ϑ and ϑ′ are curve-like train tracks with associated decorated curves
A(ϑ) = γ = (γ, V, ϕ) and D(ϑ2) = γ′ = (γ′, V ′, ϕ′), and that ϑ and ϑ′ are in admissible position.
Then C(ϑ,ϑ′) ∼= CF (γ,γ′).

Proof. Generators of C(ϑ,ϑ′) correspond to triples (x, p, q), where x ∈ γ ∩ γ′, p ∈ Sx and q ∈ S′
x,

while generators of CF (γ,γ′) correspond to pairs (x,A), where A is a generator of Vx ⊗ V ′
x. They

are in bijection via the map that sends (x, p, q) to (x, ep ⊗ eq).

Similarly, immersed disks with boundaries on ϑ and ϑ′ are in bijection with triples (ψ, α, α′), where
ψ is an immersed disk with boundary on γ1 and γ2, α is a path on ϑ which projects to the part of
the boundary of ψ which lies on γ (and similarly for α′), and α and α′ have the same endpoints.
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Under the bijection above, the contribution to the differential on C(ϑ1,ϑ2) coming from ψ matches
the contribution to the differential on CF (γ1,γ2) coming from ψ. □

Proposition 4.13. If γ1,γ2 ∈ C then ⟨γ1,γ2⟩ ≃ ⟨g(γ1), g(γ2)⟩.

Proof. Let Ni = g(γi), let ϑi be the curve-like train track associated with γi, and consider the
complex C(ϑ1,ϑ2). In order for C(ϑ1,ϑ2) to be defined, we need the pair to be admissible—there
can be no immersed annuli carried by A(ϑ1) and D(ϑ2). To ensure this, we will modify ϑ2 so
that it has no component for which the underlying curve consists only of the following four types of
segments:

This ensures that the pair is admissible, since any immersed annulus, when cut by α and β, consists
only of the connecting pieces shown in Figure 12. If any component of ϑ2 does contain only the
four segment types above, we choose one of the latter three types of segments and modify ϑ2 by
applying a finger-move isotopy to the given segment across either α or β, as in Figure 11. If ϑ2 has
parallel copies of the relevant segment we apply the isotopy to each copy, keeping them parallel, and
ensure that the finger-move avoids any crossover arrows. Let ϑ′

2 denote the result of applying these
finger-moves, if necessary, to ϑ2. Note that ϑ′

2 is an almost reduced train track whose corresponding
type D structure N ′

2 is homotopy equivalent to N2, where the homotopy equivalence replaces certain
ρ12, ρ23, or ρ123 arrows with zig-zags as in Figure 11; N ′

2 is both bounded and almost reduced.

By Theorem 2.2, C(ϑ1,ϑ
′
2) is isomorphic to NA

1 ⊠ N ′
2, which is quasi-isomorphic to NA

1 ⊠ N2 =
⟨g(γ1), g(γ2)⟩. On the other hand, by Lemma 4.12, C(ϑ1,ϑ

′
2)

∼= CF (γ1, r(γ
′
2)), where γ

′
2 is isotopic

to γ2. Passing to homology gives the statement of the proposition. □

To prove Theorem 4.11, we must show that g is injective and surjective. For surjectivity, we appeal

to Theorem 1.5. Given an element of D, we choose a reduced representative N and an extension Ñ
of N . By Theorem 1.5, N is homotopy equivalent to a reduced type D structure N ′ whose associated
train track is a collection of curve-like train tracks. As we explained in the proof of Theorem 1.5,
to such a train track we can naturally associate an immersed decorated multicurve γ. To see that
γ is an element of C, we must check that each curve γ ⊂ γ is unobstructed, or equivalently, that γ̃
is embedded in the universal cover. This follows from the fact that each individual segment of γ is
embedded together with the fact that N ′ is reduced, so the path traced out by γ in the universal
cover (thought of as a thickening of the regular 4-valent tree) never retraces itself. Then g(γ) = N ′

is homotopy equivalent to our original N , so g is surjective.

4.3. Injectivity of g. To complete the proof of Theorem 4.11, we show that g is injective. Suppose
that N1 = g(γ1) and N2 = g(γ2) are homotopy equivalent to each other. Since N1 and N2 are
homotopy equivalent, they have the same pairing behavior; that is,

H∗(N
A
1 ⊠N) ∼= H∗(N

A
2 ⊠N)

for any reduced type D structure N . For i = 1, 2, let ϑi be a curve-like train track in T that
represents γi. It follows from Theorem 2.2 that H∗(C(ϑ1,ϑ)) ∼= H∗(C(ϑ2,ϑ)) for any reduced
weakly valid train track ϑ. We will show that γi is determined by the groups H∗(C(ϑi,ϑ)) as ϑ
varies; thus γ1 = γ2.

Since ϑi is a curve-like train track, a component of ϑi consists of the following data: an immersed
curve γ in the punctured torus that intersects α ∪ β minimally, an integer determining how many
parallel copies of γ there are, and a collection of crossover arrows between parallel copies of γ. The
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curve γ may be represented as a reduced cyclic word in {α±1, β±1} by traversing γ and recording
the intersections with the parametrizing curves α and β, with negative crossings recorded as inverse
letters. Equivalently, we realize γ as an element of the fundamental group of the marked torus,
which is the free group on two generators. Here we take the generators α and β of the fundamental
group to be the simple closed curves dual to the parametrizing curves α and β. Note that viewing
γ as an element of the fundamental group requires choosing a basepoint, but choosing a different
basepoint only changes the resulting word by cyclic permutation.

The underlying curves of ϑi are determined by the results of pairing ϑi with certain immersed line
segments. To see this, we first define the immersed segments in question. Given a reduced word I in
{α±1, β±1} we construct a train track ϑI from a sequence of horizontal and vertical segments, with
each segment having endpoints near the center of the marked torus and crossing either α or β exactly
once. Each segment corresponds to a letter in the word I depending on which parametrizing curve
it crosses, where negative crossings are interpreted as an inverse letter. In particular, each letter α
in I gives rise to horizontal segment oriented rightward, and each letter β in I gives rise to a vertical
segment oriented downward. We construct ϑI by connecting these segments end to end, smoothing
the corners, in the order determined by the word I; this results in an oriented immersed curve
segment with the property that, when traversed, the intersections with α and β read off the word I.
Some examples are shown in Figure 41 and Figure 42. Note that traversing the segment with the
opposite orientation gives the inverse word I−1 in the free group, so ϑI = −ϑI−1 . We will generally
not distinguish ϑI from ϑI−1 , since the orientation is not relevant for pairing. Following Section 2,
ϑI represents a type D structure with one generator for each segment and arrows determined by
Figure 8. Note that this type D structure satisfies ∂2 = 0 but it is not extendable. Equivalently (by
Proposition 3.6), the train track is only weakly valid.

For any given word I in the free group generated by α and β we can define a new word Ī, which may
be viewed as dual to I. Rather than define this new word algebraically, we define a procedure for
constructing the immersed line segment ϑĪ from ϑI . More precisely, we will first construct D(ϑĪ),
and then determine ϑĪ from it. Assuming that the length of I is greater than 1, D(ϑĪ) is chosen
so that (1) the first segment of D(ϑĪ) intersects the first segment of A(ϑI), (2) the last segment
of D(ϑĪ) intersects the last segment of A(ϑI), and (3) the paths in D(ϑĪ) and A(ϑI) connecting
these first and last intersections are homotopic rel endpoints; see Figure 41. These rules uniquely
determine the sequence of horizontal and vertical segments appearing in D(ϑĪ): for each step after
the first, we choose the segment so that it exits the square (the fundamental domain for T ) by the
same side as A(ϑI). In the special case where the length of I is 1, we introduce the convention
that Ī = I, so D(ϑĪ) intersects A(ϑI) in a single point. Note that reflecting across the antidiagonal
in the torus takes A(ϑI) to D(ϑI) and D(ϑĪ) to A(ϑĪ) so that applying the dual operation to Ī
recovers I.

These immersed curve segments will be used as test train tracks against which we will pair the
curve-like train tracks ϑi we hope to identify. It turns out that for any word I, the result of pairing
with ϑĪ gives us information about how many times the word I appears in the cyclic word defining
a curve-like train track. More precisely, for a curve-like train track ϑi and a word I, let nI(ϑi) be
the number of times either I or I−1 appears in the cyclic words representing the underlying curves
of ϑi, where each appearance is counted with multiplicity associated with the relevant cyclic word
(i.e. the dimension of the local system associated with the corresponding curve component of ϑi).

Lemma 4.14. For a curve-like train track ϑ, nI(ϑ) is determined by the dimension of the homology
of C(ϑ,ϑĪ) together with the values of nJ(ϑ) for all words J for which J̄ is a subword of Ī.

Proof. The homology of the complex C(ϑ,ϑĪ) does not depend on the local system on ϑ (that is, on
the crossover arrows) since ϑĪ is not a closed curve. Without loss of generality then, assume that
all local systems are trivial and ϑ has no crossover arrows. Each component of ϑ is represented by
a cyclic word in α and β with some multiplicity. Note that in A(ϑ) there is a horizontal segment
for each instance of α or α−1 in the words representing ϑ (counted with multiplicity), and there is
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ϑαβα−1β

α

α−1

β β

z z z

Figure 40. Starting from the word I = αβα−1β we construct ϑI (left). Next (center) we

constructA(ϑI) by applying the operations of Section 2.5, and then findD(ϑĪ) via the construction
in the text. The shaded bigons illustrate the homotopy rel endpoints between the two curves. Note

that the start and end points of D(ϑĪ) (as well as any corners) must lie in the lower left quadrant

of the square. Finally, we reflect across the antidiagonal (right) to obtain A(ϑĪ), and hence ϑĪ .
This determines Ī = ααβ−1. Since A(ϑĪ) and D(ϑI) satisfy the same relationship as A(ϑI) and

D(ϑĪ),
¯̄I = I.

a vertical segment for each instance of β or β−1. Moreover, the immersed arc obtained by following
A(ϑ) from one horizontal or vertical segment to another can be interpreted as A(ϑI) for a subword I
of the cyclic word representing the relevant component of ϑ, and the arc A(ϑI) (ignoring orientation)
appears for each instance of I or I−1 in the cyclic words representing ϑ.

We first observe that the dimension of H∗(C(ϑ,ϑα)) is precisely nα(ϑ). This follows from the fact
that D(ϑα) consists of a single vertical segment and no bigons are formed in this case, so intersecting
D(ϑα) with A(ϑ) simply counts the number of horizontal segments in A(ϑ). Similarly, nβ(ϑ) is
determined by H∗(C(ϑ,ϑα)). We will demonstrate the proof for longer words I in an example before
commenting on the general case. Let I = αβ−1α, so A(ϑI) and D(ϑĪ) are as shown in Figure 42;
note that Ī = α−1βα−1. To compute the homology of C(ϑ,ϑĪ) we first find the generators. These
count α-α or β-β intersections, so there are nα(ϑ) generators for each α or α−1 in I and nβ(ϑ) for
each β or β−1 in I. In this example, the number of generators is given by 2nα(ϑ) + nβ(ϑ). We
next consider the differential. The length two subwords of Ī are J̄1 = α−1β and J̄2 = βα−1, with
dual words J1 = αβ−1 and J2 = β−1α (note that in this example J1 and J2 are subwords of I,
but this need not be the case). Letting J be either J1 or J2, for each instance of J or J−1 in the
cyclic words representing ϑ, there is a bigon between the portion of A(ϑ) corresponding to J and
the portion of D(ϑĪ) corresponding to J̄ . These bigons take the form of the lightly shaded bigon in
Figure 42 for J = J1 or the darkly shaded bigon in the figure for J = J2. It is not difficult to see
that all bigons contributing to the differential occur in this way. If all such bigons were disjoint then
we would simply cancel two generators for each bigon. However, if two bigons share an endpoint
then this computation is incorrect, as it would over-cancel. We next observe that if A(ϑ) contains a
segment that looks like A(ϑαβ−1α) then intersecting with D(ϑĪ) produces a pair of bigons sharing
an endpoint as in Figure 42, and any pair of bigons formed with D(ϑĪ) and sharing an endpoint
must have this form. Thus we can correct for the over-cancellation by adding 2nαβ−1α(ϑ), and we
have

dimH∗(C(ϑ,ϑĪ)) = 2nα(ϑ) + nβ(ϑ)− 2nαβ−1(ϑ)− 2nβ−1α(ϑ) + 2nαβ−1α(ϑ)

The last term on the right is nI(ϑ) and all other terms on the right are nJ(ϑ) where J̄ is a subword
of Ī, as desired.

We now consider the case of an arbitrary word I. A key fact implicit in the example above is that
any intersection point x between A(ϑ) and D(ϑĪ) is an end of at most two bigons, and if there are
two then they both start at x or they both end at x. This fact holds in the general case, as we
will show below. Assuming this, note that the Floer complex C(ϑ,ϑĪ) is a direct sum of zig-zag
chains, i.e. complexes that can be represented by a chain of dots along a line connected by arrows
on that line pointing in alternating directions. The dimension of H∗(C(ϑ,ϑĪ)) is a function of the
number of generators and the number of zig-zag chains of length k for each k > 0; note that when
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ϑαβ−1α

z z

Figure 41. As simple example illustrating the key step in the proof of Lemma 4.14, the pairing

of A(ϑI) with D(ϑĪ) for I = αβ−1α, shown both in the punctured torus and a covering space.

we count zig-zag chains of length k we will include subchains of longer chains, so for instance a
chain of length three also contributes two to the count of length two chains and three to the count
of length one chains. Now consider a bigon or chain of bigons starting at an intersection point x
and ending at an intersection point y, contributing a zig-zag chain to C(ϑ,ϑĪ) (we do not assume
the chain of bigons is maximal, so the zig-zag chain may be a subchain of a longer zig-zag chain in
the complex). The portion of D(ϑĪ) from the segment containing x to the segment containing y is
D(ϑJ̄) for some subword J̄ of Ī. The portion of A(ϑ) from the segment containing x to the segment
containing y runs parallel to D(ϑJ̄) and so by the definition of the bar operation on segments this
portion of A(ϑ) is A(ϑJ). This indicates that J or J−1 appears in the cyclic word representing ϑ.
Conversely, each time J or J−1 appears in the word representing ϑ a corresponding subset of A(ϑ)
agrees with A(ϑJ) and forms such a chain of bigons with the subset D(ϑJ̄) of D(ϑĪ). It follows
that chains of bigons of that particular form are precisely counted by nJ(ϑ), and the counts of all
chains is determined by nJ(ϑ) for all J for which J̄ is a subword of Ī. If nJ(ϑ) is known for all J
for which J̄ is a strict subword of Ī, then nI(ϑ) can be determined from dim(H∗(ϑ,ϑĪ)).

It remains to show that the complex C(ϑ,ϑĪ) breaks into zig-zag chains. This ultimately relies
on the fact that ϑ and ϑĪ are reduced, but it is especially apparent given the particular pairing
position we assume for C(ϑ,ϑĪ). In particular, recall that any bigon contributing to the differential
in C(ϑ,ϑĪ) must decompose into pieces of the forms shown in Figure 12. We can exclude the pieces
of small bigons in the top row of the figure because ϑĪ is assumed to be reduced rather than only
almost reduced. By inspecting these pieces it is straightforward to check that x cannot be both a
starting and an ending point of a bigon. For example, if x is in the top left quadrant of the square,
a bigon starting at x is only possible if the path in A(ϑ) starting rightward from x first leaves the
square on the top edge or if the path in D(ϑĪ) starting downward from x first leaves the square on
the left edge, but a bigon ending at x is only possible if both these paths first leave the square on
the right or bottom edge.

Inspecting the pieces in Figure 12 reveals that an intersection point x can be the start or end of
at most one bigon covering a given quadrant locally near x. Indeed, the paths in A(ϑ) and D(ϑĪ)
starting from x in the directions required to surround a given quadrant near x uniquely determine
a chain of pieces like those in Figure 12, which ends the first time the paths leave the square on
different sides. A bigon is formed only if the paths eventually cross, so that the chain of pieces gets
to an ending piece, and once this happens there is no way of adding more pieces to get a second
bigon with a corner at x. More precisely, again by inspecting Figure 12, observe that both the left
and right boundary of any bigon, viewed as paths from the starting intersection point to the ending
intersection point, must move monotonically upward and leftward in the following sense: considering
only the midpoints of the horizontal and vertical segments making up the path (recall that these
are where intersections occur), the projection to the vector (−1, 1) in the plane is non-decreasing,
and it is strictly increasing except possibly at the beginning or end of the path (this happens in
the case of the first or third starting piece or the first or third ending piece in Figure 12). Now
suppose there are two bigons starting at x covering the same quadrant locally near x (the argument
for bigons ending at x is similar). Call these bigons B1 and B2, call their endpoints y1 and y2, call
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their left boundaries by ∂LB1 and ∂LB2 and call their right boundaries by ∂RB1 and ∂RB2. Let
B1 be the bigon with the shorter left boundary, so that ∂LB1 ⊂ ∂LB2; it can be shown that ∂RB2

must a subset of ∂RB1, since otherwise B2 would have a region of negative multiplicity near y1 (at
least in an appropriate cover). In fact, ∂LB2 must intersect ∂RB1 at some other point y3 between
y2 and y1. But in this case y3 occurs before y1 on ∂RB1 and after y1 on ∂LB2, violating the fact
that both paths move monotonically in the upward/leftward direction. (Note that monotonicity of
∂LB2 implies that y3 is strictly above/left from y1 since neither of them is an end of ∂LB2). □

The preceding lemma (and induction on the length of ϑĪ) shows that if the dimension of the homology
of C(ϑ,ϑJ̄) is known for every word J , then the number of instances of I or I−1 in ϑ can be
determined for any word I. Since ϑ has a finite number of curves that have a finite length, sufficiently
long words will only occur a nonzero number of times if they repeat the entire cyclic word for one
of the immersed curves in ϑ. In this way, the underlying immersed curves in ϑ can be determined,
with multiplicity.

It remains to show that if ϑ1 and ϑ2 are curve-like train tracks with the same underlying curves
and multiplicities but with different local systems, then there is some ϑ′ with C(ϑ1,ϑ

′) ̸≃ C(ϑ2,ϑ
′).

Let γ be an underlying curve of ϑ1 and ϑ2 for which the local systems are non-isomorphic. We will
take ϑ′ to be curve-like with underlying curve γ. Since the local systems on the other components
of ϑ1 and ϑ2 have the same multiplicities, they will have the same pairing with ϑ′. Thus we may
assume that ϑi has a single underlying curve γ and that the monodromy of the local system is some
k × k matrix Ai. Referring to the calculation in Corollary 4.10, we see that it suffices to prove the
following result.

Proposition 4.15. If A1 and A2 are k× k matrices over F which are not similar, then there exists
a matrix B such that rk(A1 ⊗B + I ⊗ I) ̸= rk(A2 ⊗B + I ⊗ I).

Proof. We outline the key steps but leave the details of the proof as an exercise to the reader. We
assume that A1, A2, and B are written in rational canonical form, and we may choose B to have a
single block, so that

B =


0 0 · · · 0 1
1 0 · · · 0 b1
0 1 · · · 0 b2
...

...
. . .

. . .
...

0 0 · · · 1 bn−1


It is sufficient to consider the case that A1 and A2 have this form as well. It follows that

A⊗B + I =


I 0 · · · 0 A
A I · · · 0 b1A
0 A · · · 0 b2A
...

...
. . .

. . .
...

0 0 · · · 1 I + bn−1A


which row reduces to 

I 0 · · · 0 M0

0 I · · · 0 M1

0 0 · · · 0 M2

...
...

. . .
. . .

...
0 0 · · · 0 I +Mn−1


where M0 = A and Mi = A(bi +Mi−1) for i > 0. The rank of this is determined by the rank of the
lower right block. We choose the coefficients in B so that p(x) = xn+ b1x

n−1+ . . .+ bn−1x+1 is the
minimal polynomial of A1, which we assume without loss of generality does not divide the minimal
polynomial of A2. It follows that A1 ⊗ B + I ⊗ I has rank k(n − 1) and A2 ⊗ B + I ⊗ I has rank
strictly greater than k(n− 1). □
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In summary, we have shown that the map g is injective: if g(γ1) = g(γ2), then Lemma 4.14 shows
that γ1 and γ2 have the same underlying curves with multiplicities, and Proposition 4.15 shows that
the local systems on each curve are isomorphic.

We have now shown that g is both injective and surjective. Together with Proposition 4.13, this
completes the proof of Theorem 4.11. □

We conclude this section with the observation that, in particular, any two extensions of an extendable
type D module correspond to the same decorated immersed curve and are thus homotopy equivalent.

Proposition 4.16. An extendable type D module over A has a unique extension up to homotopy
equivalence.

5. Bordered Floer invariants as decorated immersed curves

We now return our attention to Floer theoretic invariants of manifolds with torus boundary. Our
goal in this section is to prove Theorems 1.1 and 1.2. Suppose that (M,α, β) is a parametrized
three-manifold with torus boundary. By Theorem 1.4 (proved in the Appendix), the type D struc-

ture ĈFD(M,α, β) is extendable. The results of the preceding two sections imply that there is a

well-defined collection of immersed curves with local systems associated with ĈFD(M,α, β). This
collection of curves lives in the abstract torus T , which we identify with TM via a map that identifies
the vertical edge of T with α ⊂ ∂M and the horizontal edge of T with β ⊂ ∂M . We denote the

result by fα,β(ĈFD(M,α, β)).

It remains to check that this collection of curves does not depend on the choice of parametrization
(α, β).

Proposition 5.1. There are equivalences

fα,β(ĈFD(M,α, β)) ∼= fα,β±α(ĈFD(M,α, β ± α))(3)

fα,β(ĈFD(M,α, β)) ∼= fα±β,β(ĈFD(M,α± β, β))(4)

where ∼= denotes regular homotopy of curves with local systems.

Proof. We will establish the equivalence (3); the equivalence (4) is nearly identical, and is left to the
reader. To this end, we recall the bimodules associated with a Dehn twist established in [38]. These
give rise to

T̂±1
α ⊠ ĈFD(M,α, β) ∼= ĈFD(M,α, β ± α)

where T̂α is the type DA bimodule denoted ĈFDA(τµ) in the notation of [38, Section 10]. This bimod-

ule, and its inverse, are shown in Figure 43. Thus we need to show that fα,β(N) ∼= fα,β±α(T̂
±1
α ⊠N),

where N is the extendable type D structure ĈFD(M,α, β).

We may work with one component of ĈFD(M,α, β) at a time, so we will assume that fα,β(N) consists
of a single immersed curve γ decorated by a local system. Let ϑ be the corresponding curve-like
train track, consisting of parallel copies of γ connected by crossover arrows. Recall that the valid
reduced train track ϑ determines an extendable type D structure which is homotopy equivalent to
N ; since we may modify N by homotopy equivalence, we will assume ϑ corresponds directly to N .
We can view the crossover arrows as all being concentrated in a single box, which slides freely along
γ. By sliding this box, we can ensure that no crossover arrow has its head or tail on a segment of
curve corresponding to a ρ3 arrow.

We claim that the effect on ϑ of tensoring N with T̂α is easy to describe: it is applying a negative
Dehn twist along α (and homotoping the result if necessary to achieve minimal intersection with
β). Let ϑ′ be the train track obtained from ϑ by applying a negative Dehn twist in a thin strip
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∗

• ◦

ρ23⊗ρ23

ρ1⊗ρ1
+ρ123⊗ρ123
+ρ3⊗(ρ3,ρ23)

ρ2⊗1

ρ123⊗ρ12
+ρ3⊗(ρ3,ρ2)

1⊗ρ3

ρ23⊗ρ2

∗

• ◦

ρ12⊗(ρ123⊗ρ2) ρ23⊗ρ23
ρ1⊗ρ1
+ρ123⊗ρ123

ρ2⊗(ρ23,ρ2)

ρ2⊗(ρ3,ρ2)

ρ3⊗1+ρ1⊗ρ12

ρ23⊗ρ3

1⊗ρ2

Figure 42. Graphical representations of the Dehn twist bimodules T̂α (left) and T̂−1
α (right),

following [38, Section 10].

along the left edge of the square T \ (α ∪ β) (see Figure 44). The effect of this transformation can
be described as follows:

• For each intersection x with α we add a new intersection point x′ with β, such that x and
x′ are connected by a segment connecting the bottom and left edges of the square;

• Each path from the bottom of the square to the left of the square ending at x becomes a
path from the bottom to the top ending at x′;

• Each path from the right of the square to the left ending at x becomes a path from the right
to the top ending at x′;

• Each path from the top of the square to the left ending at x becomes a path from the top
edge of the square to itself ending at x′; and

• intersection points with β and curve segments that do not meet the left edge of the square
are uneffected.

We can attempt to read off a type D structure from this new train track in the usual way, although
we note that the result may not be a valid type D structure (it may fail to satisfy ∂2 = 0). In any

case, the result is precisely what is obtained from N by tensoring with T̂α, if we ignore the two

operations in T̂α with multiple A∞ inputs. Indeed, referring to Figure 43, this has the following
effect on N :

• For each ι0 generator x we add a new ι1 generator x′ such that x and x′ are connected by
a ρ2 arrow;

• Each ρ2 arrow ending at x becomes a ρ23 arrow ending at x′;
• Each ρ12 arrow ending at x becomes a ρ123 arrow ending at x′;
• Each path ρ3 arrow starting at x becomes an arrow labelled by 1 = ρ∅ starting at x′; and
• ι0 generators, ρ1, ρ123 and ρ23 arrows are unchanged.

To be precise, the new generator x′ corresponds to ∗⊠ x, while the new x (in T̂α ⊠N) corresponds
to • ⊠ x. Note that each ρ3 in N gives rise to a ρ∅ labelled arrow in the tensor product, and a
corresponding bigon between ϑ′ and β. We will now use the assumption that ϑ is curve-like and
that there are no crossover arrows between segments corresponding to ρ3 arrows in N ; it follows that
bigons between ϑ′ and β appear in one of the three configurations shown in Figure 45. These three
configurations arise from ρ3 arrows in ϑ that are followed by, respectively, backwards ρ1 arrows, ρ23
arrows, and ρ2 arrows. Note that in the latter two configurations, adding the gray segments shown

in the figure corresponds to incorporating the two operations of T̂α that we ignored until now into
the box tensor product with N—each (ρ3, ρ23) or (ρ3, ρ2) sequence in N gives becomes a ρ3 in the
tensor product. Let ϑ′′ be the result of adding these gray lines to ϑ′. Note that ϑ′′ is a valid (not

necessarily reduced) train track and the corresponding type D structure is precisely T̂α ⊠N .
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Figure 43. Applying a Dehn twist to a train track

Now consider the effect of removing the bigons between ϑ′′ and β. In the first configuration, removing
the bigons by homotoping the parallel immersed curves has precisely the effect of canceling ρ∅ arrows
in the underlying type D structures. Each ρ1 arrow into a generator z for which there is a ρ∅ arrow
from x′ to z and a ρ2 arrow from x′ to x becomes a ρ12 into x. In the second two configurations, the
segments of ϑ′′ forming the bigon can simply be deleted. This is because in the corresponding type D
structure, the terminal endpoints of the ρ∅ arrows have no other incoming arrows, so the endpoints
of the ρ∅ arrows can be canceled without adding any new arrows. In all three configurations, it is
clear that the result of removing the bigons from ϑ′′ in the appropriate way is simply the result of
homotoping ϑ′ to be in minimal position with β.

We have shown that a curve-like train track associated with T̂α⊠N is obtained from ϑ by applying
a negative Dehn twist about α. Thus, interpreting curve-like train tracks as decorated immersed

curves, we have that fα,β(T̂α ⊠N) is obtained from f(N) by applying the same Dehn twist to the

underlying curve γ of f(N). It follows that fα,β(N) ∼= fα,β+α(T̂α⊠N), since the change of marking
cancels the action of the Dehn twist.

A similar argument applies to the bimodule T̂−1
α , where tensoring by this bimodule has the effect of

applying a positive Dehn twist about α to the corresponding train track and to f(N). However, it is

easier to observe that fα,β(N) = fα,β(T̂α⊠ T̂−1
α ⊠N) is obtained from fα,β(T̂

−1
α ⊠N) by applying a

negative Dehn twist, so fα,β(T̂
−1
α ⊠N) is obtained from fα,β(N) by applying a positive Dehn twist.

Again, we see that fα,β(N) ∼= fα,β−α(T̂
−1
α ⊠N), since the change of marking cancels the action of

the Dehn twist. □

Since we can move between any two markings/bordered structures by a sequence of Dehn twists,
Proposition 5.1 ensures that

fα,β(ĈFD(M,α, β)) ∼= fα′,β′ (ĈFD(M,α′, β′))

for any two pairs of parametrizing curves (α, β) and (α′, β′).

We will write

ĤF (M) = fα,β

(
ĈFD(M,α, β)

)
.

As we have shown, this definition is independent of the choice of parametrization (α, β). This
completes the proof of Theorem 1.1.

We now turn to the proof of Theorem 1.2. Recalling the set-up of the theorem, suppose M0 and M1

are manifolds with torus boundary and h : ∂M1 → ∂M2 is a gluing map. Chose a parametrization
(α1, β1) for ∂M1 and fix the parametrization (α0, β0) of ∂M0 by setting α0 = h(β1) and β0 =
h(α1). Following the conventions for bordered Heegaard Floer invariants (see Section 2.2), these
parametrizations are consistent with the gluing map h; that is, by the pairing theorem in [39],

ĤF (M0∪hM1) is given by the homology of ĈFA(M0, α0, β0)⊠ ĈFD(M1, α1, β1). By the equivalence
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Figure 44. Possible configurations of bigons in ϑ′ corresponding to ρ3 arrows in N that are
followed by backward ρ1 arrows, ρ23 arrows, and ρ2 arrows, respectively. The assumption that ϑ

has no crossover arrows between segments corresponding to ρ3 arrows ensures that the bigons do

not involve any crossover arrows; there could be crossover arrows in the boxes shown. The black
segments are part of ϑ′ and ϑ′′ is obtained from ϑ′ by adding the gray segments in the second

and third configuration.

of categories proved Section 4, the homology of this box tensor product agrees with the pairing of the

decorated immersed curves f(ĈFD(M0, α0, β0)) and f(ĈFA(M1, α1, β1)). To pair these curves we
include them in the same marked torus, reflecting one across the anti-diagonal, and take intersection

Floer homology. Note that as 3-manifold invariants, we think of ĤF (M0) = f(ĈFD(M0, α0, β0)) and

ĤF (M1) = f(ĈFA(M1, α1, β1)) as living in two different marked tori, the parametrized boundaries
ofM0 andM1. Identifying these marked tori with a reflection across the anti-diagonal corresponds to
a gluing map which takes α1 to −β0 and β1 to α0; this is precisely the map h̄, the elliptic involution

composed with h. Letting γ0 denote ĤF (M0) and γ1 denote the image of ĤF (M1) under h̄, the
pairing is given by HF (γ0,γ1), as claimed.

Remark 5.2. Theorem 1.2, which follows from our graphical representation of type D structures
in terms of train tracks (Section 2) and the structure theorem for these tracks in terms of immersed
curves with local systems (Section 3), inherits some features from the box tensor product in bordered
Floer homology. For instance, the appearance of h̄ instead of h was initially a surprise to us. Of

course, if ĤF (M1) is invariant under the elliptic involution, there is no difference between using h
and h̄. This symmetry is known to hold when M1 is a knot complement in S3 by a result of Xiu
[51], and when M1 is a graph manifold as discussed in [23]. In the companion to this paper [22], we
show that it holds for all manifolds with torus boundary.

6. Gradings

The bordered invariants of M come equipped with a mod 2 and a Spinc grading. In this section,

we explain how the invariant ĤF (M) can be enhanced to capture this information, leading to a
proof of Theorem 1.7. While this does not capture all of the graded information in the bordered
Heegaard Floer package, it is sufficient for the applications in this paper; a more thorough discussion
of gradings, including the Maslov grading, appears in the companion to this paper [22].

6.1. The Z/2Z grading. We first recall the Z/2Z grading in bordered Floer homology. For each

spinc structure s, ĈFD(M,α, β; s) admits a relative Z/2Z grading grD as defined by Petkova in [45].
(This grading may be identified with a specialization of the full grading package on the bordered
invariants; see [29, Appendix A].) The relative Z/2Z grading satisfies grD(∂x) = grD(x) − 1 and
grD(a⊗ x) = grD(a) + grD(x) for a ∈ A, where grD(ρ1) = grD(ρ3) = 0 and grD(ρ2) = grD(ρ123) =
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Edge type Vertex sign Orientation Edge type Vertex sign Orientation

I• + • I◦ + ◦

I• − • I◦ − ◦

II• + • II◦ + ◦

II• − • II◦ − ◦

Table 1. Producing the oriented graph given a signed A-decorated graph Γ and the vertex types

from Figure 46.

grD(ρ12) = grD(ρ23) = 1. Note that if ĈFD(M,α, β; s) is connected (see below), the relative Z/2Z
grading is completely determined by this condition. The generators of ĈFA(M,α, β; s) inherit a

grading grA from the corresponding generators in ĈFD(M,α, β; s), where the grading of generators

with idempotent ι0 is reversed. A generator x0 ⊗ x1 in a box tensor product ĈFA(M0, α0, β0) ⊠

ĈFD(M1, α1, β1) inherits the grading grA(x0) + grD(x1), which recovers the relative Z/2Z grading

on ĈF (M0 ∪M1).

The graph representing a Z/2Z graded type D structure can be enhanced, replacing the vertex
labeling {•, ◦} with {•+, •−, ◦+, ◦−}, where + designates grA grading 0 and − designates grA grading
1. Referring to the conventions above, we see that an edge labeled 2 or 123 joins two vertices with
opposite sign, while an edge with any other label joins two vertices with the same sign.

•

•

•

123

12

1

I•

•

•

•

12

2

3

II•

◦

◦

◦

1

23

2

I◦

◦

◦

◦

123

23

3

II◦

Figure 45. Vertex types for A-decorated

graphs.

We first observe that this data is equivalent to a choice of
orientation on each edge of the underlying (undecorated)
graph. Given a vertex v, we partition the edges incident
to v into two types, as shown in Figure 46. That is,
if v has label •, incident edges are either of type I• or
type II•, and similarly if v has label ◦. This is a natural
partition to consider in the context of extendable type D
structures:

Proposition 6.1. Suppose that Γ is an A-decorated graph
associated with a reduced extendable type D structure N . Then every vertex • has at least one inci-
dent edge of type I• and at least one incident edge of type II•, and every vertex ◦ has at least one
incident edge of type I◦ and at least one incident edge of type II◦.

Proof. This is essentially [23, Proposition 3.3]. □

In particular, when Γ has valence 2 (and hence the associated train track is an immersed curve),
there is exactly one of each edge type incident at every vertex.

This partition allows us to convert the system of signed vertices into an orientation on the underlying
graph. The orientations on edges incident to any given vertex are assigned following the rules in Table
1. See Figure 47 for this process carried out in an example. Note that reversing the overall orientation
on this graph corresponds to switching the grading of every vertex, and vice versa. For consistency
with the gradings on the relevant bordered invariants, if an orientation in a given component is to be
changed one must reverse orientations on every connected component corresponding to the relevant

summand ĈFD(M,α, β; s).

Lemma 6.2. The conventions of Table 1 define a consistent orientation on each edge of the graph.

Proof. It is enough to check that edges labelled 2 and 123 change the grading and that all other
labelings preserve it. It is easy to see from the table that the two ends of an edge have the same
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•

◦

•◦

•

◦

◦

•

• ◦

•
1

12

1

23

1

3

123
2

1

23

3

12
1

3

12

+

+

+
−

+

+

+

+

+
+

+

•

◦

•◦

•

◦

◦

•

• ◦

•

Figure 46. A Z/2Z augmentation of an A-decorated graph (left), and the associated orientation

graph (right).

mod 2 grading if they are both of the same type (i.e. both I or both II). Referring to Figure 46, we
see that edges labeled 2 and 123 have one end of type I and one of type II; other edges have ends
of the same type. □

Remark 6.3. The condition from Proposition 6.1 ensures that every vertex of the graph has both
an inward pointing and an outward pointing edge. If the graph is a loop corresponding to an
immersed curve γ in TM , it follows that the Z/2Z grading is completely determined by the choice of
an orientation on γ. More generally, if the graph corresponds to an immersed curve with a connected
local system, all the parallel curves in the local system must carry the same orientation. Thus to
specify the Z/2Z grading it is again enough to specify an orientation on the underlying immersed
curve.

6.2. The Spinc grading. Now we review the Spinc grading on bordered Floer homology. Recall

that each generator x of ĈFD(M,α, β) has an associated spinc structure s(x) ∈ Spinc(M). The
elements of Spinc(M) are homology classes of nonvanishing vector fields on M , and Spinc(M) has
the structure of an affine set modeled on H2(M) ∼= H1(M,∂M) (i.e. an H2(M)–torsor.) The same

decomposition holds for ĈFA(M,α, β), so that

ĈFD(M,α, β) =
⊕

s∈Spinc(M)

ĈFD(M,α, β; s) and ĈFA(M,α, β) =
⊕

s∈Spinc(M)

ĈFA(M,α, β; s).

Restricting attention to the generators in a particular idempotent ι, we can also define a refined spinc

grading sι(x), which lives in an affine set Spinc(M, ι) modeled on H2(M,∂M) ∼= H1(M). Elements
of Spinc(M, ι) are homology classes of nonvanishing vector fields with prescribed behavior on ∂M ,
and s(x) is the image of sι(x) in Spinc(M).

To compare the refined gradings of two generators, we adopt the following. Given s ∈ Spinc(M), let

Spinc(M, ι, s) = {s ∈ Spinc(M, ι) | s = s in Spinc(M)}.
If j∗ : H1(∂M) → H1(M) is the map induced by inclusion, Spinc(M, ι, s) is an affine set modeled on
HM = im j∗ ∼= H1(∂M)/ ker j∗. We define Spinc(M, s) = Spinc(M, ι0, s) ∪ Spinc(M, ι1, s). If x is a

generator of ĈFD(M,α, β, s) in idempotent ι, we write s(x) = sι(x) ∈ Spinc(M, s).

Let 2S ⊂ H1(∂M) be the kernel of the linear map H1(∂M) → Z/2Z given by α 7→ 1, β 7→ 1,
and consider the lattices 1

2H1(M) and S = 1
2 (2S) inside H1(∂M ;R). We have inclusions H1(M) ⊂

S ⊂ 1
2H1(M), and each lattice is index two in the next larger one. Let SM be the image of S in

H1(∂M ;R)/ ker j∗ so we have inclusions HM ⊂ SM ⊂ 1
2HM , where each subgroup is index two in
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Labeled edge s(y)− s(x) Labeled edge s(y)− s(x)
1

x y −(α+ β)/2
12

x y −β
2

x y
(α− β)/2

23
x y

α
3

x y
(α+ β)/2

123
x y

(α− β)/2

Table 2. Grading shifts in ĈFD(M,α, β) associated with labelled edges.

the next larger one. (Note that S and SM depend on α and β, although this is not reflected in the
notation.)

Lemma 6.4. Spinc(M, s) can be given the structure of an SM–torsor such that (a) the action of
HM ⊂ SM agrees with the pre-existing action of HM on Spinc(M, s) and (b) if x, y are generators

of ĈFD(M,α, β, s) that are joined by an arrow, then the difference s(y)− s(x) is given by Table 2.

Proof. This is a rephrasing of [46, Lemma 3.9]; compare [39, Lemma 11.42]. Specifically, the action
of HM on SM has two cosets H and H ′. Each coset is an HM–torsor, and H ′ = H − (α + β)/2.
Choose some HM -equivariant identification φ : Spinc(M, ι0, s) → H. For s ∈ Spinc(M, ι1, s) define
φ(s) = φ(i−1(s))− (α+β)/2, where i : Spinc(M, ι0, s) → Spinc(M, ι1, s) is the HM -equivariant map
defined in [46, Lemma 3.9]. Then φ(Spinc(M, ι1, s)) = H ′, so φ defines an HM equivariant bijection
between Spinc(M, s) and SM . This gives Spinc(M, s) the structure of an SM torsor satisfying
property (a). Property (b) follows from the corresponding list of grading shifts in [46, Lemma
3.9]. □

As in the introduction, we define p : TM → TM to be the covering map defined by the condition that
π1(TM ) is the kernel of the composite map π1(TM ) → H1(TM ) → H1(∂M) → H1(M). Equivalently,
if ℓ generates the kernel of j∗ : H1(∂M ;Z) → H1(M ;Z), then TM is the quotient of H1(∂M ;R) \
H1(∂M ;Z) by the action of ℓ. The group of deck transformations on TM is isomorphic to HM .
The class ℓ ∈ H1(∂M ;Z) is the homological longitude. It is an integer multiple of a primitive class
λ ∈ H1(∂M ;Z), which is called the rational longitude.

Let qα, qβ ∈ TM be the midpoints of the arcs α and β, and define Sα = p−1(qα) ⊂ TM , Sβ =

p−1(qβ) ⊂ TM . Then Sα ∪ Sβ is naturally an SM–torsor and the subsets Sα and Sβ are identified
with the HM–cosets H and H ′. By Lemma 6.4, the SM–torsor Spinc(M, s) can be identified with
Sα ∪ Sβ (as SM–torsors) in such a way that Spinc(M, ι0, s) maps to Sα and Spinc(M, ι1, s) maps to
Sβ . Equivalently, by identifying an arc with its midpoint, we can identify Spinc(M, s) with the set

of lifts of α and β to TM . We fix one such identification and write αs or βs for the lift of α or β
corresponding to s. Note that any other such identification differs from our fixed one by the action
of an element of HM .

In Section 2 we explained how to assign a train track ϑ(M,α, β) in TM to the type D structure

ĈFD(M,α, β). Since the differential on ĈFD(M,α, β) respects the decomposition into Spinc struc-
tures, ϑ(M,α, β) decomposes as a union of train tracks ϑ(M,α, β; s), where s runs over Spinc(M).

Proposition 6.5. ϑ(M,α, β; s) lifts to a unique train track ϑ(M,α, β; s) in TM with the property
that if x is a switch of ϑ(M,α, β; s) lying on α (resp. β) its lift lies on αs(x) (resp. βs(x)).

Proof. We lift each switch x on α (resp. β) to its preimage on αs(x) (resp. βs(x)). It remains to

check that we can lift each section of track, which corresponds to some arrow in ĈFD(M,α, β), in a
way that is compatible with the lifts of its endpoints. Comparing the grading shifts in Table 2 with
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Figure 8, we see that this is indeed the case. Uniqueness of ϑ(M,α, β; s) is clear, since the given
condition determines the positions of all the switches in the lift. □

Finally, note that if we had chosen a different identification of Spinc(M, s) with Sα∪Sβ , the resulting
lift of ϑ(M,α, β, s) would differ from the one constructed above by the action of an element of HM .

Proof of Theorem 1.7. Orient the track ϑ(M,α, β; s) and lift it to a collection of oriented tracks
ϑ(M,α, β; s) in TM . The result is a compact train track in the cover TM , which we now simplify
as in Section 3. In fact, we can simplify ϑ(M,α, β; s) using exactly the same moves as we used to
simplify ϑ(M,α, β) down in TM . Each move we perform involves some arcs and/or crossover arrows
that are supported in the 0-handle of the downstairs track. It is easy to see from the definition that
all of the arcs involved lift up to a single 0-handle in the cover, so the move can be performed on
the cover as well.

It is also easy to see that these moves respect the relative Z/2Z grading. For example, consider
move (M1), which eliminates a clockwise running crossover arrow which runs from x to y, as in
Proposition 3.10. Let z be the generator connected to y by the two-way arc, so that ∂y contains a
term of the form ρJ ⊗ z. The presence of the crossover arrow implies that ∂x contains a term of the
form ρIJ ⊗ z. It follows that x and ρI ⊗ y have the same Z/2Z grading, so the change of basis in
which we replace x by x+ ρI ⊗ y respects the Z/2Z grading. The argument for move (M2) is very
similar.

We define ϑ(M, s) to be this simplified train track; its image in TM is the track obtained by simpli-
fying ϑ(M, s). Finally, the same argument as in Section 5 shows that ϑ(M, s) does not depend on

the choice of parametrization. We denote the resulting invariant by ĤF (M, s). □

Let T̂M = H1(∂M ;R)/H1(∂M ;Z) be TM with the puncture filled in.

Corollary 6.6. Each component of ĤF (M) is homotopic to some multiple of ℓ in T̂M . If b1(M) = 1,

ĤF (M, s) represents the homology class ℓ ∈ H1(T̂M ) for each s ∈ Spinc(M). If b1(M) > 1, ĤF (M, s)

is null homologous in T̂M .

Proof. Filling in the punctures of TM gives a covering space T̂M of T̂M that is homeomorphic to the

cylinder H1(∂M ;R)/⟨ℓ⟩. The image of a component of ĤF (M, s) in this covering space is homotopic

to some multiple of ℓ. Pushing everything back down to T̂M gives the first statement.

For the second, recall that the Z/2 grading induces a well-defined orientation on the components

of ĤF (M), so it makes senses to talk about the homology class it represents. To compute this
class, we Dehn fill M along some slope α which is not the rational homological longitude, so

b1(M(α)) = b1(M) − 1. If s ∈ Spinc(M(α)), ĤF (M(α), s) is obtained by pairing ĤF (M, s|M )
with the image of some line Lα,s with slope α in TM . Since α is not a multiple of ℓ, the image of

Lα,s in TM is noncompact and generates the Borel-Moore homology HBM
1 (T̂M ) ≃ Z. In particular,

the intersection number Lα,s · ℓ = 1, so if [ĤF (M, s)] = kℓ ∈ H1(T̂M ), then Lα,s · ĤF (M, s) = k.

On the other hand, Lα,s · ĤF (M, s) = χ(ĤF (M(α), s)). The result now follows from the well-known

fact that χ(ĤF (M(α), s)) = 1 if b1(M(α)) = 0, and is 0 otherwise. □

To sum up, for each s ∈ Spinc(M), ĤF (M, s) is a well-defined collection of curves equipped with
local systems in the cover TM . When we want to emphasize the fact that we are thinking of the

copy of TM containing ĤF (M, s), we will denote it by TM,s.
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It is tempting to try to combine all the ĤF (M, s) for different s into a single well-defined collection of
curves in TM—for example, by identifying relative Spinc structures with the same value of ⟨c1(s), x⟩,
where x is a generator of H2(M,∂M). Although this can sometimes be made to work, it is not
possible in general. A good example to consider is when M is the twisted I-bundle over the Klein
bottle (Example 7.9b) where Spinc(M) consists of two Spinc structures s0, s1 with the property that
if s ∈ Spinc(M, si) then

1
2 ⟨c1(s), x⟩ ≡ i mod 2.

6.3. The refined pairing theorem. Suppose that Y = M0 ∪h M1. The relative Spinc grading

on ĈF (Y ) can be recovered from the box tensor product ĈFA(M0, α0, β0) ⊠ ĈFD(M1, α1, β1) as

follows. Consider the box tensor products x0 ⊠ x1 and y0 ⊠ y1, where x0, y0 in ĈFA(M0, α0, β0) and

x1, y1 in ĈFD(M1, α1, β1). We have

s(xi)− s(yi) ∈ SMi
.

Note that x0 and y0 are in the same idempotent if and only if x1 and y1 are, so either both differences
are in HMi

or neither one is. Recalling that HMi
= H1(∂Mi)/ ker ji,∗, where ji,∗ is the map induced

by the inclusion ji : H1(∂Mi) → H1(Mi), we see that the sum s(x0)− s(y0) + s(x1)− s(y1) is a well
defined element of

H1(∂M0)/ (ker(j0,∗)⊕ ker(j1,∗)) ∼= H1(Y ).

It is equal to the difference s(x0 ⊠ x1)− s(y0 ⊠ y1).

Restriction gives a surjective map

π : Spinc(Y ) → Spinc(M1)× Spinc(M2).

If si ∈ Spinc(Mi), it is not hard to see that π−1(s0×s1) is a torsor over HY = H1(∂M0)/⟨ℓ0, h∗(ℓ1)⟩),
where ℓi is the homological longitude ofMi. Let TY be the covering space of TM0

whose fundamental
group is the kernel of the natural map π1(TM0

) → H1(TM0
) → HY ; TY is the largest covering space

of TM that is covered by both TM0
and TM1

.

Let pi : TMi
→ TY be the projection, and let p1 be the composition with p1 with the elliptic

involution on TY . (The elliptic involution is the map which descends from the map w 7→ −w on the

universal cover. It is well defined up to the action of the deck group.) The images p0(ĤF (M0, s0))

and p1(ĤF (M1, s1)) are well defined up to the action of the deck group HY .

Proposition 6.7. Suppose that s ∈ Spinc(Y ) has π(s) = s0 × s1. There is some αs ∈ HY such that

ĤF (Y, s) is given by the pairing of p0(ĤF (M0, s0)) with αs · p1(ĤF (M1, s1)) in TY . Moreover, the

relative Z/2Z grading of a generator of ĤF (Y, s) is given by the sign of the corresponding intersection
point.

Proof. It suffices to check that the statement about Spinc structures holds for the train tracks
ϑ(M0; s0),ϑ(M1, s1) (before simplification), since the pairings before and after simplification are

the same. Suppose x0, x1 are generators of ĈFA(M0), ĈFD(M1) that pair to give a generator of

ĈF (Y, s). Then we must have x0 ∈ ĈFA(M0, s0) and x1 ∈ ĈFD(M1, s1), and we may choose αs

so that the intersection between the train tracks p0(ϑ(M0); s) and αs · p1(ϑ(M1; s)) contains the
intersection between the segments corresponding to x0 and x1. If y0, y1 are other generators of

ĈFA(M0, s0) and ĈFD(M1, s1), y0 ⊠ y1 will be a generator of ĈF (Y, s) if and only if the image
of s(x0) − s(y0) − s(x1) + s(y1) is 0 in H1(Y ). This is equivalent to saying that s(x0) − s(y0) and
s(x1)−s(y1) have the same image inH1(Y ), and this occurs if and only if the segments corresponding
to y0 and y1 intersect in p0(ϑ(M0; s0)) ∩ αs · p1(ϑ(M1; s1)).

Next, consider the relative Z/2Z grading. Recall that fixing the Z/2Z grading on ĈFA(M0, α0, β0)

corresponds to choosing an orientation of each curve in γ0 = ĤF (M0). In particular, upward
(respectively downward) oriented α0 segments in γ0 correspond to ◦+ (respectively ◦−) generators
of ĈFA(M0, α0, β0), and rightward (respectively leftward) oriented β0 segments in γ0 correspond to
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•+ (respectively •−) generators of ĈFA(M0, α0, β0). Fixing the Z/2Z grading on ĈFD(M1, α1, β1)

corresponds to choosing orientations on γ1 = ĤF (M1) with similar identification except that the
grading is reversed on • generators. Reflecting across the anti-diagonal, it follows that upward
(respectively downward) oriented segments in γ1 correspond to •+ (respectively •−) generators of

ĈFD(M1, α1, β1) and rightward (respectively leftward) oriented segments in γ1 correspond to ◦−

(respectively ◦+) generators of ĈFD(M1, α1, β1). The (relative) Z/2Z grading on ĤF (M0 ∪hM1) is
given by gr(x⊗y) = grA(x)+grD(y), while the grading of HF (γ0,γ1) is given by intersection signs.

It is straightforward to check that generators of ĤF (M0∪hM1) of the form ◦+⊗◦+, ◦−⊗◦−, •+⊗•+,
and •−⊗•−, which all have the same Z/2Z grading, correspond exactly to positive intersection points
and the remaining generators correspond to negative intersection points. □

6.4. Examples. We conclude with some examples of how the Spinc grading is computed.

Example 6.8. Suppose that M is a homology S1 × D2. In this case the homological longitude ℓ
coincides with the rational longitude λ. Take x ∈ H2(M,∂M) with ∂x = λ, and µ ∈ H1(M) with
µ · λ = 1, so that µ · x = 1. If we use the parametrization α = µ and β = λ, we have

ι0ĈFD(M,µ, λ) ≃ SFH (M,γµ) ≃ ĤFK (Kµ)

where Kµ is the core of the Dehn filling M(µ).

Figure 47. Lifts of µ and their

intersections with the curve rep-

resenting the right-hand trefoil.
.

There is a unique Spinc structure s on M , and the set Spinc(M, ι0, s)
is a Z–torsor. Let si ∈ Spinc(M, s) be the relative Spinc structure with
⟨c1(s), x⟩ = 2i, and let µi be the associated lift of µ. There is a natural
height function h : TM → R such that the height of the midpoint of µi
associated to s is i, and HF (ĤF (M, s0), µi) = ĤFK (Kµ, i) is the knot
Floer homology of Kµ in Alexander grading i. Figure 48 illustrates the

computation for ĤFK (T (2, 3)). The vertical segments in the middle of
the diagram are µ−1, µ0, and µ1, so there is one generator in each of
s−1, s0, and s1.

More generally, the same method can be used to compute ĤFK (Kα)

from ĤF (M), where α is any primitive curve on ∂M . This and other relations between ĤF (M) and
knot Floer homology are discussed in [22].

Example 6.9. Now suppose that M0 and M1 are homology S1 ×D2’s, and that h identifies their
homological longitudes, so thatH1(Y ) ≃ Z. There is a unique Spinc structure si onMi, but Spin

c(Y )
is a Z-torsor, and TY = TM0

= TM1
.

Let ti ∈ Spinc(Y ) satisfy ⟨c1(ti), y⟩ = 2i, where y generates H2(Y ). Then ĤF (Y, ti) = HF (γ0, αi ·γ1)
where γ0 = ĤF (M0, s0) and γ1 is obtained by starting with ĤF (M1, s1) and applying the elliptic
involution, which sends µk to µ−k. The action of αi shifts the height by i units, so the net effect is
to superimpose γ0 and γ1 in such a way that µk in the first diagram is identified with µi−k in the
second.

In general, suppose we are given M whose rational longitude λ has order k in H1(M). Choose a
class x ∈ H2(M,∂M) with ∂x = kλ, and a class µ in H1(M) with µ · λ = 1, so that µ · x = k. Then
HM

∼= Z⊕ Z/k, and there is a height function hx : TM,s → R that satisfies hx(qs) =
1
2 ⟨c1(s), x⟩. If

s, s′ ∈ Spinc(M, ι0, s), then

hx(qs)− hx(qs′) =
1

2
PD(c1(s)− c1(s

′)) · x

is a multiple of k. Hence all the heights for a given s are congruent to a single value modulo k, and
there are k meridians at each such height.
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Example 6.10. Now suppose that we have two manifoldsM0 andM1, with rational longitudes λi of
order ki, that are identified by h. Let k = gcd(k1, k2), and define ci = ki/k. Given xi ∈ H2(Mi, ∂Mi)
as above, we can form a primitive class y = c2x1 − c1x2 ∈ H2(Y ). Given si ∈ Spinc(Mi), let

γi = ĤF (Mi, si). Then for t ∈ π−1(s0, s1),

ĤF (Y, t) = HF (p0(γ0), αt · p1(γ1)),
where αt ∈ HY = H1(∂M0)/⟨k0λ, k1λ⟩ ≃ Z⊕ Z/kZ.

The height functions hxi
on TMi

induce height functions hy,i : TY → R given by hy,1(p1(w)) =
c2hx1

(w) and hy,2(p1(w)) = −c1hx1
(w). Then ⟨c1(t), y⟩ measures the shift in heights induced by αt

so that

⟨c1(t), y⟩ = 2(hy,1(αt · w)− hy,2(w))

for all w ∈ TY .

7. Applications

With invariance (Theorem 1.1) and pairing (Theorem 1.2) for ĤF (M) established, we can now
provide proofs for the applications stated in the introduction.

7.1. Peg-board diagrams. To facilitate the proofs, we will first discuss a convenient way of ar-

ranging the curves ĤF (M).

Figure 48. Pulling the invariant for the
trefoil tight.

Suppose γ is a component of ĤF (M). To understand the
pairing between γ and some other curve it is helpful to “pull
the curves tight.” Intuitively, we can imagine TM as being
a flat Euclidean torus (like a board with the sides identified)
and the puncture as represented by a peg pounded into the
board. We place a rubber band in the homotopy class deter-
mined by γ, and see what position it settles into. To draw
this curve, it is convenient to first lift it to the cover TM and

then take the preimage of this lift in the larger cover T̃M . The latter space can be identified with flat
Euclidean R2 with a lattice of pegs—in other words, a peg-board. Hence we refer to these curves
as peg-board diagrams. Figure 49 illustrates this process for the trefoil complement. We offer three
different mathematical formulations of this idea, and explain how they are related.

We first describe the notion of an ϵ-geodesic. Fix a flat metric g on T̂M = H1(∂M ;R)/H1(∂M,Z) by
choosing a parametrization of ∂M and using it to identify H1(∂M ;R) with R2. Consider a manifold
TM,ϵ with a complete Riemannian metric gϵ defined as follows. TM,ϵ is the union of two parts. The
first part is the complement of the ball of radius 2ϵ centered at the origin in TM , equipped with
the flat metric g. The second part is modeled on a surface of revolution in R3, as illustrated in
Figure 50. The smooth curve that we rotate to get the surface should agree with the x-axis for
x > 2ϵ, with the line x = ϵ for y > ϵ, and should be given by the graph of some smooth function
y = f(x) with f ′(x) < 0 and f ′′(x) > 0 for x ∈ (ϵ, 2ϵ). We will refer to this second part of TM,ϵ

as the peg. The constructed surface TM,ϵ is homeomorphic to TM , and the conditions on f ensure
that gϵ is non-positively curved. The flat part of TM,ϵ has two connected components: one in the
interior, and one that is boundary parallel. It is clear from the construction that TM,ϵ embeds in

T̂M × R. Let p : TM,ϵ → TM be the projection.

A curve γ ⊂ TM,ϵ is an ϵ-geodesic if it is geodesic for the metric gϵ. We summarize the relevant
properties of such curves here:

Lemma 7.1. Any nontrivial free homotopy class of loops in TM can be represented by an ϵ-geodesic
γ. This representative is unique unless γ is entirely contained in the flat part of TM,ϵ, i.e. is either
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ϵ 2ϵ

ϵ 2ϵ

Figure 49. A geometric model for the punctured torus: Attaching an infinite tube of radius ϵ

to the flat torus results in a complete metric that is non-positively curved and flat away from the
smoothed attaching region. In the centre, we have shaded the compact region used in our appeal

to Thorbergsson’s work [49]. On the right, we have projected to the torus and illustrated the

invariant associated with the right-hand trefoil exterior; compare Figure 49.

boundary parallel or a Euclidean geodesic in the interior flat part. Any two distinct ϵ-geodesics
intersect minimally and transversally.

Proof. Consider the compact subset K ⊂ TM,ϵ obtained as the complement of the boundary flat
part. The only free homotopy classes that have representatives disjoint from K are boundary
parallel. Such classes clearly have geodesic representatives—namely a meridional circle around the
peg. By a theorem of Thorbegsson [49, Theorem 3.2(i)], any other free homotopy class has a geodesic
representative γ. A standard argument using the Gauss–Bonnet theorem shows that if γ, γ′ are two
geodesic representatives in the same free homotopy class, they are entirely contained in the flat part
of TM,ϵ. Such a geodesic is contained in either the interior flat part of the torus, in which case it is
a line, or in the boundary flat part, in which case it is boundary parallel. For the last statement,
note that two distinct geodesics always intersect transversally, and the theorem of Freedman, Hass,
and Scott [13] ensures that they intersect minimally. □

We say that a geodesic contained in the flat part of TM,ϵ is loose; all other geodesics are tight. A
corner of an ϵ-geodesic γϵ is a connected component of the intersections of γϵ with the curved part
of TM,ϵ. The property of being loose is equivalent to having no corners.

Given an ϵ-geodesic γ, we will construct another curve γ′ ⊂ TM that is homotopic to p(γ) and refer
to γ′ as an ϵ-pegboard diagram. The curve γ′ is obtained by modifying the corners of γ, as illustrated
in Figure 51. To make this precise, let C2ϵ be the circle of radius 2ϵ centered on the puncture in
TM , so that C2ϵ is the boundary of the interior flat part of TM,ϵ. If c is a corner of γ, let p1 and p2
be the two points at which c intersects C2ϵ. Let L be the perpendicular bisector of the line between
p1 and p2, which also intersects the center of C2ϵ. Reflection in L induces an isometry of TM,ϵ that
preserves the endpoints of the geodesic c, and hence c itself. Let L1 and L2 be the Euclidean lines in
TM extending the parts of γ in the flat part of TM,ϵ. Reflection in L exchanges L1 and L2, so there
is a circle C centered at the origin and tangent to L1 and L2. Since L1 and L2 cut C2ϵ, the radius
of C is less than 2ϵ. We can homotope c to obtain a curve c′ that runs along L1 until it reaches C,
runs along C for some time, and then exits along L2.

Let θ(c) be the angle that L1 makes with C2ϵ (by symmetry, this is also the angle that L2 makes
with C2ϵ. There are two important quantities describing c that are determined by θ(c). The first is
r(c), the radius of the circle C. The second is the length of the arc obtained by projecting c radially
outward to C2ϵ; we denote this quantity by ψ(c). Observe that r is a strictly decreasing function of
θ, while ψ is a strictly increasing function of θ. It follows that r is a strictly decreasing function of
ψ.

If c1 and c2 are two corners with distinct endpoints, the intersection number i(c1, c2), is the minimal
number of intersections between transversally intersecting curves in D2ϵ \ 0 that are homotopic rel
boundary to c1 and c2. We say c1 and c2 are in minimal position if they realize the intersection
number. For example, if c1 and c2 are corners of ϵ-geodesics, they are in minimal position.
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C2ϵ

c

θ

θ

L2

L1

C

c′

Figure 50. Constructing a pegboard corner c′ from a geodesic corner c. The first step shows the

original c together with the two lines L1 and L2. The second step shows the new circle C, and

the last shows the new curve c′.

Lemma 7.2. Suppose that c′1 and c′2 are two corners constructed as above from geodesic corners c1
and c2. If c′1 and c′2 intersect transversally, they are in minimal position.

Proof. Identify the universal cover of the punctured disk with R× (0, 2ϵ]. The curves c′1 and c′2 are
in minimal position if c̃′1 and c̃′2 are in minimal position for every lift c̃′1 of c′1 and every lift c̃′2 of c′2.
The shape of c̃′1 and c̃′2 is illustrated in Figure 52. The depth of the trapezoidal shape made by the
lift of c′i is 2ϵ− r(ci), and its width is ψ(ci). Since r is a strictly decreasing function of ψ, the lifts
have no excess intersection. □

c̃′1 c̃′2

Figure 51. The universal cover of the punctured disk, with lifts of c′1 and c′2. The key point is
that the deeper shape is also wider. To compute the intersection number, we take the intersection

of c̃′1 with the orbit of c̃′2 under the action of the deck group.

If r(c1) = r(c2), c
′
1 and c′2 will not intersect transversally, but we can perturb them into minimal

position by slightly changing r(c2). Since r(c1) = r(c2) implies that ψ(c1) = ψ(c2), c
′
1 and the

perturbation of c′2 will be in minimal position as long as c1 and c2 have distinct endpoints.

If γ is an ϵ-geodesic, we define the ϵ-pegboard diagram γ′ to be the curve obtained by applying the
operation above to every corner of γ, so that an ϵ-pegboard diagram is composed of straight line
segments together with circular arcs that are tangent to these line segments.

Corollary 7.3. If γ′1 and γ′2 are the ϵ-pegboard diagrams induced by distinct ϵ-geodesics γ1 and γ2,
then they are in minimal position.

Proof. Since γ1 and γ2 are distinct ϵ-geodesics, they are in minimal position. By Lemma 7.2 γ′1 and
γ′2 have the same number of intersections as γ1 and γ2. □

Finally, we discuss the third notion of peg-board position, which corresponds to letting the radius
of the peg go to 0. We use our chosen parametrization of TM to identify a fundamental domain
for TM with the square [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ]; the puncture is the point (± 1

2 ,±
1
2 ), the vertical sides are

identified with α, and the horizontal sides are identified with β.

Any essential loop in TM is free homotopic to a curve γ with no backtracking. Such a loop is
represented by a cyclic word in α±1 and β±1, which we also call γ. Recall that, by familiar abuse of
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notation, the letters of the word γ correspond to the intersections of the curve γ with the horizontal
and vertical sides of the square; see Figure 53, below. More precisely, if the ith letter is α±1, the
corresponding intersection point has coordinates vi = (± 1

2 , xi); if it is β±1, the intersection has

coordinates vi = (xi,± 1
2 ) for some xi ∈ [− 1

2 ,
1
2 ]. (Note that with this notation, the generators α

and β of π1 are dual to the corresponding parametrizing curves.)

The curve γ is homotopic to a piecewise linear curve obtained by replacing the segment of γ between
vi and vi+1 with a line segment. Conversely, suppose that the word γ has n letters. Given x ∈
[− 1

2 ,
1
2 ]
n, we let γx be the piecewise linear loop in T whose vertices are the points vi. Consider

F : [− 1
2 ,

1
2 ]
n → R given by F (x) = ℓ(γx), the length of γx. We can express this length as follows.

If we cut TM open to form the square [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ], the curve γx gets cut into a sequence of

oriented line segments. Each point vi has two preimages (± 1
2 , xi) in the square. We label these vin

i ,

vout
i in such a way that the ith segment runs from vout

i to vin
i+1. Then F (x) =

∑n
i=1 d(v

out
i ,vin

i+1),
where d denotes the Euclidean distance, and vn+1 = v1.

Note that since we allow xi ∈ [− 1
2 ,

1
2 ], the points vin

i , v
out
i may lie at the corners of the square

corresponding to the punctures. If we have two consecutive points vout
i , vin

i+1 which lie on the same
corner of the square, the corresponding line segment can have zero length.

Definition 7.4. If x is a minimum for the function F we call γx a singular pegboard diagram for γ.

Since the domain of F is compact, every essential loop γ has at least one singular pegboard diagram
γx. Note that γx is not actually a curve in TM unless x is in the interior of [− 1

2 ,
1
2 ]
n. However γx is

homotopic to γ in T̂M , so γx lifts to the covering space T̂M obtained by filling in the punctures of
TM . If vi is a vertex of γx for which xi = ± 1

2 , we say vi is a corner of γx.

α

β

Figure 52. A weakly tight

curve is obtained from the word
αβ−1α2β. To make the curve

easier to see, we’ve drawn a
fundamental domain with the
puncture in the middle.

Note that it is possible for multiple points x to give the same underlying
curve γx. This occurs if a segment of γx containing three or more
vertices lies along one of the parametrizing curves, say α. In this case
we can move the interior vertices that lie on α freely along α without
changing the underlying curve; see the proof of Proposition 7.5, below.

If x is an unique global minimum for F , we say that γx is strongly tight.
If x is a global minimum for F and every other global minimum gives
rise to the same underlying curve γx (as described in the paragraph
above), we say γx is weakly tight. Finally, if γx is a line in TM and
can be freely deformed to nearby parallel geodesics we say γx is loose.
Observe that if γϵ is a loose ϵ-pegboard diagram for γ, the same curve
is also a loose singular pegboard diagram for γ.

Proposition 7.5. If x is a local minimum for F , then γx is either strongly tight, weakly tight, or
loose.

Proof. Write F =
∑n
i=1 fi, where either fi =

(
1 + (xi − xi+1)

2
)1/2

or fi =
(
(xi ± 1

2 )
2 + (xi+1 ± 1

2 )
)1/2

.

Since the functions f(u) = (1 + u2)1/2 and g(u, v) = (u2 + v2) are both convex, it follows that fi
and F are convex functions as well. The convexity of F places restrictions on its minima: Any local
minimum x is necessarily a global minimum, and if x and x′ are two global minima, F is constant
along the line segment that joins x and x′. We refer to such a segment as a null line for F .

Suppose that x+ tw, t ∈ [0, 1], is a null line for F , and let γx+tw be the corresponding deformation
of γx. We divide the vertices of γx+tw into two types: those for which vi(t) moves as t varies, and
those for which it stays fixed. We claim that if there is one fixed vertex, then the underlying curve
γx+tw stays fixed as t varies. To see this, suppose we have two fixed vertices vi and vj , separated
by some number of moving vertices. (Since the vi are cyclically ordered, we can take vi = vj if
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necessary, so one fixed vertex suffices.) Since vi+1 is a moving vertex, we can find some t ∈ [0, 1]
for which vi+1(t) lies in the interior of the interval on which it moves. But for every t ∈ [0, 1],
x + tw is a global minimum for F . It follows that vi(t),vi+1(t), and vi+2(t) must lie on a line;
otherwise we could shorten γx+tw by moving vi+1(t) and fixing the other vi(t). Repeating, we find
that vi(t),vi+1(t), . . . ,vj(t) are all collinear. But vi and vj were fixed by hypothesis, so the line
they lie on is fixed as well. If this line happens to coincide with an α or β curve, then the intervening
points can move along it. In this case γx is weakly tight. Otherwise, they are fixed as well, and
if this is the case for all segments of γx, it is strongly tight. In either case, the underlying curve
remains the same.

Finally, suppose that every vertex is moving, so we can find some small t such that all the vi lie in
the interior of the interval in which they move. The same argument as above shows that the vi are
all collinear, so the curve is loose. □

We relate the different notions of pegboard representative by showing that when ϵ is small, an ϵ-

geodesic for a curve γ is close to a singular pegboard diagram for γ. We say that curves γ1, γ2 ⊂ T̂M
are δ-close if they can be parametrized so that |γ1(t)− γ2(t)| < δ for all t.

Proposition 7.6. Suppose γx is a singular pegboard representative for γ and that we are given
δ > 0. Then there exists an ϵ0 > 0 such that, for every ϵ < ϵ0, there is a ϵ-geodesic γϵ representing
γ for which p(γϵ) is δ-close to γx.

Proof. Suppose that γx is tight. Let Xϵ be the image of the map p : TM,ϵ → T ; it is the complement
of an open ball of radius ϵ centered at the origin. There is a unique continuous map s : Xϵ → TM,ϵ

satisfying p ◦ s = 1Xϵ . Let γ be a path in TM,ϵ. Since TM,ϵ embeds in T̂M × R, the length of γ is
greater than or equal to the length of p(γ).

Let C(r) be the cube [−r, r]n, and let C◦(r) be its interior. Define Fϵ : C(
1
2 − ϵ) → R by Fϵ(x) =∑n

i=1 dϵ(s(vi), s(vi+1)), where dϵ denotes the Riemannian distance in TM,ϵ. Said another way,
Fϵ(x) is the length of the piecewise geodesic arc γx,ϵ in TM,ϵ obtained by joining the points s(vi)
and s(vi+1) by geodesic segments.

Fϵ has the following properties. First, the fact that ℓ(γ) ≥ ℓ(p(γ)) implies that Fϵ ≥ F . Second, if
|xi|, |xi+1| < 1

2 − 4ϵ, then the geodesic between s(vi) and s(vi+1) is the straight line in TM . Hence

F = Fϵ on C(
1
2 − 4ϵ). Third, if x is a local minimum for Fϵ, then γx,ϵ is a geodesic. This follows

from the usual principle that rounding a corner of a piecewise geodesic segment reduces its length.

Fix some r > 0, and consider:

Nr = {z ∈ C(1/2) | d(x, z) ≤ r for some global minimum x for F}

N◦
r = {z ∈ C(1/2) | d(x, z) < r for some global minimum x for F}

Set Yr = Nr \N◦
r so that Nr and Yr are closed subsets of C( 12 ) while N

◦
r is an open subset. No point

of Yr is a global minimum, so F (y) > F (x) for all y ∈ Yr. Yr is compact, so there is some η > 0
such that F (y) ≥ F (x) + η for y ∈ Yr. Since F is continuous, we can find some z ∈ Nr ∩ C◦( 12 )

with F (z) < F (x) + η. Finally, choose ϵ0 > 0 so that z ∈ C◦( 12 − 4ϵ0). Suppose that ϵ < ϵ0 and let

z′ be a global minimum point for Fϵ on the compact set Nr ∩ C( 12 − ϵ). Using the first and second
properties above, we see that for y ∈ Yr,

Fϵ(y) ≥ F (y) > F (z) = Fϵ(z).

Hence z′ ∈ N◦
r ∩ C( 12 − ϵ), which implies that z′ is a local minimum for Fϵ. By the third property,

γz′,ϵ is a geodesic. Now if ϵ < δ/4 it is easy to see that there is some r > 0 such that p(γz,ϵ) and γx
are δ-close whenever ∥z − x∥ < r. Taking this value of r in the argument above gives the desired
statement.
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If γx is loose, the statement is easy: we choose ϵ0 small enough that there is a line in the flat part
of TM,ϵ0 that is δ-close to γx. □

Corollary 7.7. Suppose that γ0 (resp. γϵ) is a singular pegboard diagram (resp. ϵ-pegboard diagram)
for γ. If γ0 is tight, then p(γϵ) → γ0 in the Hausdorff metric as ϵ→ 0.

Proof. If ϵi → 0, Proposition 7.6 tells us that there is some sequence of ϵi-geodesics {γϵi} such that
p(γϵi) converges to γ0 in the Hausdorff metric. As γ0 is tight, γϵi is tight for all ϵi. Hence γϵi is the
unique gϵi geodesic in the homotopy class of γ. So if {γ′ϵi} is any sequence of ϵi-geodesics for γ, we
must have {γ′ϵi} = {γϵi}. □

If γ1, γ2 are ϵ-geodesics (or pegboard diagrams), we can write i(γ1, γ2) = i◦(γ1, γ2)+
∑

(c1,c2)
i(c1, c2)

where i◦(γ1, γ2) is the intersection number of the flat parts, of γ1 and γ2, and the the sum runs over
all pairs of corners (c1, c2) for γ1 and γ2.

For some arguments it is useful to have a similar formula for singular pegboard diagrams, but when
we pass to the limit ϵ → 0 to obtain a singular pegboard diagram γ, we lose information about
the homotopy class of the corners. To be precise, the underlying curve γ does not depend on the
homotopy class of the corners. However, if we remember not just γ, but the minimizer x that
determines it, we can recover the homotopy class from the number of consecutive vertices vi with
d(vi,vi+1) = 0 at the corner. Taking the limit of the formula above as ϵ→ 0, we obtain:

Corollary 7.8. If γ1, γ2 are singular pegboard diagrams such that no slope of γ1 is also a slope of
γ2, then

i(γ1, γ2) = i◦(γ1, γ2) +
∑

(c1,c2)

i(c1, c2)

where i◦(γ1, γ2) is the number of intersections away from the corners, and i(c1, c2) is a local inter-
section number determined by the homotopy data at the corners. □

To specify the homotopy class at a corner, we choose a small disk D centered at the puncture and
project a path realizing the homotopy class out to ∂D. The resulting homotopy class is determined
by the total angle ϕ that it covers. (The angle ϕ plays the same role as the quantity ψ for which
we used for ϵ-geodesics.) Note that a corner with angle |ϕ| < π cannot be realized as part of a
singular pegboard diagram (since the resulting curve can be shortened). Hence the smallest possible
angle always has π ≤ |ϕ| ≤ 2π. If the angle is ≥ 2π, we say that γ wraps the peg at that corner.
The boundary case where ϕ = π often requires special treatment in later arguments: we refer to
such a corner as a π-corner (or, sometimes, a straight corner). When a distinction is required,
non-π-corners then will be called true corners.

If neither c1 nor c2 wraps the peg, the local intersection number i(c1, c2) is easily described. Let A1

and A2 be the arcs specifying the homotopy classes of c1 and c2. Then we have:

i(c1, c2) =


0 if A1 and A2 are nested

1 if A1 and A2 are not nested and A1 ∩A2 has one component

2 if A1 and A2 are not nested and A1 ∩A2 has two components

7.2. Solid torus like curves. Having introduced peg-board diagrams, we pause to discuss two key
classes of immersed curves that arise. These are illustrated by the following two examples:

Example 7.9. (a) If M is the solid torus S1 × D2, then ĤF (M) is the longitude ∂D2 × {pt}
decorated with the trivial 1-dimensional local system.

(b) If M is the twisted I-bundle over the Klein bottle, ĈFD(M) was computed in [10]; see also
[23]. In our conventions, as an A-decorated graph, it has two connected components that, with an
appropriate choice of bordered structure, can be described as follows:
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•
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•

12

•

1
◦

3

•

123
◦
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Both components are loop-type, and it is easy to see that ĤF (M) consists of the two immersed
curves shown in Figure 54, each decorated with the trivial local system.

Figure 53. Pulling the in-

variant associated with the

twisted I-bundle over the
Klein bottle tight.

The invariant of the solid torus pulls tight to a singular pegboard diagram
lying on a line, and is loose. In contrast, both curves for the twisted I-
bundle over the Klein bottle lie on a single line when you pull them tight,
but only one of them is a loose curve. The other curve (the lower one in the
figure) has two π-corners. The manifolds M for which every component

of ĤF (M) has this form form an interesting class. Consider the following
definition, which was first made in [50] (see also [23]):

Definition 7.10. Suppose M is a three-manifold with torus boundary,
that λ ∈ H1(∂M) is the rational longitude, and that µ · λ = 1. We

say that M is a Heegaard Floer homology solid torus if ĈFD(M,µ, λ) ∼=
ĈFD(M,µ+ λ, λ).

A longer discussion of this class of manifolds is given in [22, Section 1.5]. For our purposes, this
definition can be rephrased in terms of curves; compare [22, Theorem 27].

Proposition 7.11. M is a Heegaard Floer homology solid torus if and only if the immersed mul-

ticurve ĤF (M) is homotopic to a curve that lies in a small neighbourhood of a representative λ
running through the puncture.

Before giving the proof, we discuss the action of Dehn twists on an immersed closed curve. Let
(T, α, β) be a marked torus. An immersed closed curve γ ⊂ T determines a reduced cyclic word,
which we also denote by γ, in π1(T ) ∼= ⟨α, β⟩, where the generators α and β are closed curves dual
to the parametrizing arcs. Let ℓ(γ) be the length of this word.

Lemma 7.12. If the intersection number i(β, γ) ̸= 0 then ℓ(τnβ (γ)) → ∞ as n→ ∞.

Proof. Intersections of γ with the closed curve β are in bijection with cyclic subwords of γ of the
form αβkα and α−1βkα−1 for k ∈ Z. The action of τnβ replaces such subwords with αβk+nα or

α−1βk−nα−1, respectively. The resulting word is still cyclically reduced. As long is there as at least
one intersection with β, its length goes to ∞ as n does, since the value of k in each subword is
fixed. □

Proof of Proposition 7.11. Let τλ : ∂M → ∂M be the Dehn twist along λ. Then τλ(µ+ λ) = µ and

τλ(λ) = λ, so M is a Heegaard Floer solid torus if and only if ĈFD(M,µ, λ) ∼= T̂λ ⊠ ĈFD(M,µ, λ),

where T̂λ is the Dehn twist bimodule considered in Section 5. By the results of that section, this

is equivalent to saying that ĤF (M) is invariant under the action of τλ, i.e. that up to regular

homotopy τλ(ĤF (M)) represents the same immersed multicurve as ĤF (M).

The hypothesis of the proposition is equivalent the statement that ĤF (M) is homotopic to a curve

that is disjoint from the closed curve representing λ. If this is the case, ĤF (M) is clearly preserved
by the action of τλ.
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Conversely, suppose ĤF (M) has a component γ for which i(γ, λ) ̸= 0. Then by Lemma 7.12

ℓ(τnλ (γ)) → ∞ as n → ∞ and so, for sufficiently large n, τnλ (γ) cannot be a component of ĤF (M).

It follows that ĤF (M) is not fixed by the action of τλ, and M cannot be a Heegaard Floer solid
torus. □

If ĤF (M) consists of a single loose curve with trivial local system in each Spinc structure, we sayM
is solid torus like. Gillespie studied such manifolds and showed that they are boundary compressible

[15, Corollary 2.9]. More generally, we say ĤF (M) is loose if each component of ĤF (M) is a

loose curve (possibly equipped with a nontrivial local system). Since ĤF (M) lifts to TM , all such
components must be parallel. We will prove the following generalization of Gillespie’s result.

Proposition 7.13. If ĤF (M) is loose then M is boundary compressible.

Before giving the proof, we recall some facts about knot Floer homology and the Thurston norm.
Let λ be the rational longitude of M , and suppose that λ has order k in H1(M). Choose a meridian
µ ∈ H1(∂M) with µ · λ = 1. Then µ is k times a primitive element of H1(M) .

Fix a class x ∈ H2(M,∂M) with ∂x = λ and define

ĤFK (Kµ, x, i) =
⊕

⟨c1(t),x⟩=2i

ĤFK (Kµ, t)

where the sum runs over t ∈ Spinc(M,∂M). Then

2 ·max{i | ĤFK (K,x, i) ̸= 0} = ∥x∥µ
Here ∥ · ∥µ is the generalized Thurston norm given by

∥x∥µ = min
[S]=x

cµ(S),

where the minimum is taken over all properly embedded orientable surfaces representing x. If S
is connected, cµ(S) = max{−χ(S) + |∂S · µ|, 0}; otherwise cµ(S) =

∑
cµ(Si), where Si are the

connected components of S.

As we described in Section 6.4, the Spinc decomposition of ĤFK (K,µ) can be computed by inter-

secting ĤF (M, s) with lifts of µ to TM,s, where s runs over Spinc(M). The choice of x determines

a height function on TM,s such that intersections of ĤF (M, s) with lifts of the meridian at height i

correspond to elements of ĤFK (Kµ, x, i).

Similarly, if Y is a closed manifold, and y ∈ H2(Y ) is a primitive class, we define

ĤF (Y, y, i) =
⊕

⟨c1(s),[Σ]⟩=2i

ĤF (Y, s).

Then ∥y∥ = 2 ·max{i | ĤF (Y, y, i) ̸= 0}.

Proof of Proposition 7.13. Fix a class x as above, and choose a norm-minimizing surface S realizing
x. After tubing to remove excess boundary components, we may assume that ∂S consists of precisely
k parallel copies of λ. Since λ has order k in H1(M), all k boundary components lie on a single
component of S. Let S0 be the component with boundary, and consider the modified complexity
c̃(S) = −χ(S0) +

∑
i>0 c(Si), where the sum runs over the other components of S. Note that

c̃(S) = c(S) unless k = 1 and S0 = D2.

By hypothesis, ĤF (M) is a union of loose curves in TM . Each individual curve lifts to some TM,s

as a circle parallel to λ. This circle is at some height n ∈ Z with respect to the height function

determined by x. Let n+ and n− be the heights of the highest and lowest circles in ĤF (M). Then

n+ is the largest value of i for which ĤFK (Kµ, x, i) is nontrivial, and n− is the lowest. Since knot
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Floer homology is conjugation-symmetric, we must have n− = −n+. The relation between ĤFK
and the Thurston norm implies that c̃(S) = 2n+ − k.

Now consider the closed manifold Y =M ∪hM , where h(λ) = −λ and h(µ) = µ, and let y ∈ H2(Y )

be the class obtained by doubling x. Then ĤF (Y, y, i) is calculated by pairing ĤF (M, s) with

α · h(ĤF (M, s′)), where s, s′ run over Spinc(M), and α runs over all deck transformations which

shift height by i. The largest value of i for which ĤF (Y, y, i) is potentially nontrivial is obtained by

pairing the highest set of curves in ĤF (M) with the lowest set of curves in h(ĤF (M)). The latter

is simply the image of the highest set of curves in ĤF (M) under h, so the maximal value of i is
n+ − n− = 2n+. We can view the highest set of curves as a single local system (V,A) on S1, so

ĤF (Y, y, 2n+) = HF (S1
(V,A), S

1
(V,A)).

The latter group is nonzero by Corollary 4.10. Since ĤF (Y, y, 2n+) ̸= 0, we see that ∥y∥ = 4n+.

On the other hand, the double DS of S represents y and has complexity 2c(S). If M is boundary
incompressible, then S0 ̸= D2, so c(S) = c̃(S) = 2n+−k. In this case, we would have c(DS) = 4n+−
2k < ∥y∥, which is impossible. We conclude that S0 = D2 and M was boundary compressible. □

Remark 7.14. The proof shows that if ĤF (M) is loose then it consists of curves that are all at
a fixed height (up to overall shift, we may assume that these are all at height 0). Loose manifolds

with curves at other heights do not exist. One possible explanation for this would be that ĤF (M, s)
should represent an exact Lagrangian in TM .

7.3. A dimension inequality for pinches. Consider the following construction: Let Y be a
rational homology sphere of the form M0 ∪h M1, so that each Mi is a rational homology solid
torus. Denote by λi the rational longitude in each ∂Mi; recall that this slope is characterized by
the property that some number of like oriented copies of λi bounds a properly embedded surface in
Mi. The Dehn surgery Y0 =M0(h(λ1)) is the result of pinching M1 in Y . Note that h(λ1) is a well
defined slope in ∂M0. In certain settings there is an associated degree n map Y → Y0, where n is
the order of i∗([λ1]) in H1(M1). In particular, when both M0 and M1 are integer homology soild
tori, there is always a degree one map associated with a pinch.

Theorem 7.15. Given a rational homology sphere Y =M0 ∪hM1, where M0 and M1 are rational
homology solid tori, there is an inequality

dim ĤF (Y ) ≥ nm dim ĤF (Y0)

where Y0 =M0(h(λ1)), n is the order of i∗([λ1]) in H1(M1), andm = |Spinc(M1)| = |H1(M1, ∂M1)|.

The proof of Theorem 1.12 follows from a special case of Theorem 7.15 (with n = m = 1).

Proof of Theorem 7.15. Let γ0 and γ1 denote the decorated curves ĤF (M0) and h̄(ĤF (M1)), re-

spectively, in TM0 = ∂M0 \ z. By the gluing theorem, ĤF (Y ) is equivalent to the Floer homology
HF (γ0,γ1) and in particular the dimension is at least the intersection number i(γ0,γ1) between γ0

and γ1. Let
p
q be the slope of the curve in TM0

determined by h(λ1), and let Lp,q be the correspond-

ing simple closed curve pα0 + qβ0. Since Y is a rational homology sphere we may assume that the
slope of λ0 is not p

q ; in particular, no component of γ0 is commensurable to Lp,q, and by the gluing

theorem dim ĤF (Y0) = i(γ0, Lp,q).

Let γ̂1 be the collection of curves obtained from γ1 by replacing any non-trivial local systems
with trivial ones of the same dimension and pulling the curves tight in the torus ∂M0 (ignoring the
basepoint). More precisely, after replacing non-trivial local systems, we delete any curve components
that are nullhomotopic in the (non-punctured) torus ∂M0, and we replace the remaining curves with
minimal length representatives of their homotopy class in the flat torus. The resulting collection
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of curves is loose and represents the same homology class in ∂M0 as γ1; we call γ̂1 the loose

representative of γ1. Recall that for each spinc-structure s of M1, the multicurve ĤF (M1, s) is
homologous, ignoring the basepoint, to the homological longitude nλ1; see Corollary 6.6. Thus, for
each spinc-structure of M1, the relevant components of γ1 are homologous in ∂M0 to n copies of
Lp,q. It follows that γ̂1 contains at least nm copies of Lp,q, so that

i(γ0, γ̂1) ≥ nm · i(γ0, Lp,q) = nm dim ĤF (Y0).

It remains to show that i(γ0,γ1) ≥ i(γ0, γ̂1).

γ1

γ̂1

Figure 54. Sliding a corner over the peg. The
corner wraps around a circle of some radius be-

tween ϵ and 2ϵ (the inner and outer radii of the

shaded annulus). We replace the segment of
curve through the annulus with a segment on

the opposite side of the peg following the circle

C2ϵ.

We will fix a small ϵ and work in an ϵ-pegboard diagram.
Note that γ̂1 can be obtained from γ1 by a sequence of
the following moves: (i) replacing a local system with a
trivial one of the same dimension; (ii) resolving a self-
intersection to split off a closed component; (iii) deleting
a component, (iv) homotopy in TM0

to put curves in ϵ-
pegboard position; and (v) passing the curve through a
peg near a corner in the peg board diagram, as in Figure
55. Moves (i) and (ii) clearly do not change the number of
intersections with γ0 at all, and move (iii) cannot increase
the intersection number. Move (iv) also does not increase
intersection number, since curves in an an ϵ-pegboard di-
agram realize the minimal intersection for their homotopy
classes in T . The remaining move, (v), requires some care, since it may introduce new intersection
points; see Figure 56.

After removing nullhomologous components, no component of γ1 is homotopic to a component of
γ0; it follows that γ0 and γ1 intersect minimally and transversely in the ϵ-pegboard diagram. By
first applying (ii) as needed, we may assume that at each corner of γ1 the curve changes direction
by at most an angle of π; that is, there is no peg-wrapping in γ1. Now fix a corner c1 of γ1 and
consider the effect of applying (v) at this corner; let ĉ1 denote the modified corner segment along
the circle C2ϵ. Since γ1 is unchanged outside the disk of radius 2ϵ, to compute the new intersection
number we only need to consider the intersection of ĉ1 with the corners of γ0. For each corner of γ0,
replacing c1 with ĉ1 either adds two intersection points, preserves intersection number, or removes
two intersection points (see Figure 56). Replacing c1 with ĉ1 will not increase the overall intersection
number as long as γ0 has at least as many type (d) corners as type (a) corners.

c1

ĉ1

c0

c1

ĉ1

c0

c1

ĉ1

c0 c1

ĉ1

c0

(a) (b) (c) (d)

Figure 55. For a fixed corner c1 of γ1, a corner c0 of γ0 has one of four types. The inside of the
corner c1 is shaded, and the dashed line indicates the modified corner ĉ1 resulting from move (v).

To analyze this situation, we decompose TM0 into a square tile (obtained by taking the closure of
TM0

∖ (α0 ∪ β0)), and consider the component of γ1 containing the chosen corner c1 as in Figure
57. This segment of curve, which we call s, begins on the boundary of the square tile at at sin,
wraps some amount around a circle with radius between ϵ and 2ϵ centered at the puncture, then
exits the square tile at sout. Note that s divides the square tile into two sides; we call the side that
contains the peg the inside of the corner c1. Similarly, any corner c0 of γ0 can be extended to a
segment through the square tile; we will call this segment x, with endpoints xin and xout on the
boundary of the tile. We can now more precisely classify corners of γ0 into the four types shown in
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sin

sout

inside

sin

sout

s̄in
s̄out

ϕ

Figure 56. A square tile representing the torus TM0
together with the section s of γ1 containing

a chosen corner c1. The inside of s is determined by containment of the peg, as shown on the left;
on the right, the corresponding segment s̄ in a singular pegboard diagram. Note that s lies in a

neighborhood of width 4ϵ around s̄. We are most interested in the case that the angle ϕ associated

with c1 in the singular pegboard diagram is strictly bigger than π (that is, c1 is not a π-corner), so
that s̄ is not a straight line. In this case, the inside of s covers strictly less than half the boundary

of the square.

Figure 56 by considering how the segment x interacts with s. We say the corner c0 is of type (a)
if both endpoints lie on the inside of c1, type (b) if exactly one endpoint lies inside c1, type (c) if
both endpoints lie outside c1 and c0 turns the same direction as c1 with no peg-wrapping, and type
(d) if both endpoints lie outside c1 and c0 wraps the peg or turns the opposite direction from c1.
Note that for type (a) corners, c0 necessarily changes direction more than c1 and so wraps closer to
the puncture, giving the nested configuration in the figure. In this case c0 is disjoint from c1 but
intersects the modified corner ĉ1 twice. For type (b) corners, c0 may turn either more or less tightly
than c1; in either case, c0 intersects both c1 and ĉ1 once. For type (c) corners, c1 must be nested
inside of c0, so c0 is disjoint from both c1 and ĉ1. Finally, type (d) corners have two intersections
with c1 but are disjoint from ĉ1. Observe that replacing c1 with ĉ1 will not increase the overall
intersection number as long as γ0 has at least as many type (d) corners as type (a) corners.

ci

xi
in xi

out

xi−1
out xi+1

in

Figure 57. Labelling

endpoints for corners of
γ0.

We now need to consider two cases with different behavior, depending on
whether the curve changes direction at the corner c1 in a singular pegboard
diagram. Let s̄ denote the piecewise linear segment of curve through the
square tile and containing the corner c1 in a singular peg-board diagram for
γ1; in other words, s̄ is the limit of s if ϵ is taken to zero. We denote the
endpoints of s̄ by s̄in and s̄out. We first consider the case that the singular
peg-board representative of γ1 changes direction at c1; that is, the segment
s̄ is not a straight line. In this case s̄in and s̄out cut the boundary of the
square tile into two unequal pieces, with the smaller piece corresponding to
the inside of c1. Note that sin and sout are close to s̄in and s̄out, respectively,
where close means within a small multiple of ϵ; in particular, since s lies in the 2ϵ-neighborhood of
s̄ and since s̄ meets the boundary of the square in an angle of at least π

4 , the distances are bounded

by 2
√
2ϵ. Since we can take ϵ to be arbitrarily small, it follows that the inside of c1 covers strictly

less than half the boundary of the square tile. We now run through all the corners {ci0} of γ0,
labeling the endpoints of the corresponding curve segments in the square tile by xiin and xiout, as
in Figure 58 (the index i should be interpreted cyclically, with the corners ordered as they appear
traversing the curve). Note that the curve γ0 may pass through the square tile (without interacting
with the peg) many times between xiout and xi+1

in ; we ignore these portions of the curve. Since γ0

does not change direction between corners, the slope of the segment leaving the tile at xiout agrees
with the slope of the segment entering the tile at xi+1

in . It follows that xi+1
in is close to the antipodal

point to xiout on the boundary of the square (i.e. the point obtained by a half-rotation about the
center of the square), where again close means within a small fixed multiple of ϵ. More precisely,
if we consider the analogous points x̄iout and x̄i+1

in coming from a singular pegboard representative
of γ1, we observe that these are antipodal points since the segments connecting them to the center
of the square have the same slope. Because γ0 lies in a 2ϵ-neighborhood of the singular peg-board

representative, xiout is within 2
√
2ϵ of x̄iout, x

i+1
in is within 2

√
2ϵ of x̄i+1

in , and xi+1
in is a distance of less

than 4
√
2ϵ from the antipodal point to xiout. For sufficiently small ϵ, it follows that if xiout is on the

inside of c1 then xi+1
in must be on the outside of c1 and not close to sin or sout in the aforementioned
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sense. We also observe that if ci0 is a type (c) corner and xiin is not close to sin or sout, then x
i+1
in

is on the outside of c1 and not close to sin or sout. This follows from the fact that c1 lies entirely
inside c0 and the antipodal point to xiout lies either outside c0 or close to xiin. In particular, if ci0 is

type (a), then xi+1
in must lie outside of c1 and ci+1

0 must be type (b), (c), or (d). Moreover, if it is

type (b) or (c) then xi+2
in lies outside c1, and we can repeat the argument with ci+2

0 ; we must reach
a type (d) corner before reaching another type (a) corner. Thus there are at least as many type (d)
corners as type (a) corners in γ0, and applying move (v) at the corner c1 does not increase the total
intersection number.

Figure 58. Segments

of γ0 interact with a

neighbourhood of γ1 in
two distinct ways.

It remains to deal with the case that the corner c1 is straight in a singular
pegboard diagram. The argument above breaks down in this case, since the
inside of the corner may cover more than half of the boundary of the square
tile, and indeed applying move (v) to a single corner that is straight in the
singular diagram may increase the total intersection number. By applying
(v) at all corners that are not straight in the singular diagram, along with
moves (i)-(iv), we can reduce to the case that all corners of γ1 are straight;
that is, γ1 is a Heegaard Floer solid torus curve. We now argue directly that
for such a curve the loose representative γ̂1 realizes the minimal intersection
with γ0. To see this consider an annular neighbourhood of γ1 containing the
radius 2ϵ circle around the peg; see Figure 59. Now decomposing γ0 into
segments connecting the corners {ci0} shows two distinct behaviours. We may ignore segments of γ0

that are contained in the neighbourhood of γ1, since the loose representative γ̂1 does not intersect
these segments of γ0. We consider then only the intersections with those segments that leave the
neighbourhood of γ1, and observe that the original curve γ1 and the loose representative γ̂1 have the
same number of intersections with these segments. As a result, we can replace γ1 with γ̂1 without
increasing the number of intersection points. □

7.4. Heegaard Floer homology for toroidal manifolds. As another immediate consequence of
the geometric interpretation of bordered Floer invariants, we will now prove Theorem 1.8, which

states that if Y contains an essential torus that is separating then dim ĤF (Y ) ≥ 5.

Proof of Theorem 1.8. By cutting along the torus, realize Y as M0 ∪h M1 where M0 and M1 are
manifolds with incompressible torus boundary and h : ∂M1 → ∂M0 is a diffeomorphism. Let γ0 =

ĤF (M0) and γ1 = h̄(ĤF (M1)) be the relevant decorated immersed multicurves in ∂M0 \ z0.

We first set some homological prerequisites in place. A manifold with torus boundaryM has rational
longitude λ and homological longitude pλ. In particular, pλ bounds a properly embedded surface in
M ; and ⟨λ⟩ generates a Z/pZ subgroup in H1(M ;Z). Applying universal coefficients and Poincaré
duality then gives a Z/pZ subgroup in H2(M ;Z), which in turn guarantees p torsion spinc-structures

on M that we denote {si}p−1
i=0 . Finally, observe that for any choice of meridian µ, that is, a slope at

distance one from λ, the Dehn filling M(µ) inherits Z/pZ ⊂ H2(M(µ);Z); by abuse of notation, we

denote the associated p torsion spinc-structures on M(µ) by {si}p−1
i=0 as well. With this homological

data in hand, we turn to Heegaard Floer homology. In particular, note that ĤF (M(µ), si) is non-
trivial for each i = 0, . . . , p − 1. This appears to be known to experts, and appeals to work of
Lidman [36]; an argument, due to the second author, is written down in [32, Proposition 8.9]. In
particular, by applying our pairing theorem, this non-vanishing result guarantees that there is at

least one curve in ĤF (M, si) for each i = 0, . . . , p − 1. Moreover, if we forget the punctures, this
curve is homologous to pλ; compare Corollary 6.6.

As in the proof of Theorem 7.15, there are two somewhat distinct cases to consider, with Heegaard
Floer solid torus type curves requiring a different approach. Recall that a corner of γi is a π-corner
if the associated angle in a singular pegboard diagram is exactly π, so that the corner pulls tight to
a straight line, and that we call all other corners true corners. If γi has no true corners then Mi is
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a Heegaard Floer solid torus. Note that if γi has one true corner, then it must have at least two
true corners. This is because if γi, a closed curve, changes direction at one corner it must change
direction again to get back to its initial slope. The one potential exception is if γi contains a single
true corner wrapping the peg an integer number of full wraps so that the curve does not change
direction; however, it follows from Corollary 7.19 in the next section that such curves do not arise.

A key observation is that, if γ0 is not a Heegaard Floer solid torus curve, the minimal intersection
number between γ0 and γ1 satisfies

(5) i(γ0,γ1) ≥ 2#{true corners of γ1}+#{π-corners of γ1}+#{loose components of γ1}.

To show this, we first consider a fixed true corner c1 of γ1 and argue that the combined intersection
number of c1 with all the corners {ci0} of γ0 is at least two. As in the proof of Theorem 7.15, we
assign the corners of γ0 types as in Figure 56, and we extend each corner ci0 to a segment xi through
the square tile with endpoints xiin and xiout. If γ0 has a type (d) corner, we are done since this corner
alone contributes two intersection points with c1. If γ0 has a type (a) corner, then the argument in
the proof of Theorem 7.15 shows there must also be a type (d) corner. By assumption γ0 has at
least one true corner. If γ0 has a true corner of type (b), take this to be ci0 and orient the curve so
that xiout is on the inside of c1. We then have that xi+1

in , being within a small neighborhood of the

antipodal point of xiout, lies outside of c1 so that the next corner ci+1
0 must have type (b), (c), or (d).

If ci+1
0 is type (b) or (d) we are done, since this contributes at least one more intersection with c1 in

addition to the one intersection from ci0. The only way that ci+1
0 can have type (c) is if the segment

from ci0 to xiout coincides with one of the segments defining c1 when we pass to a singular peg-board
diagram and ci+1

0 is a π-corner. In this case, the same reasoning shows that ci+1
0 is type (b), (c),

or (d) and can only be type (c) under the same conditions. Since we must eventually reach a true
corner, we eventually reach a type (b) or (d) corner, contributing at least the second intersection
with c1 (note that if we reach a type (b) corner, it can not be the corner ci0 we started with since
the incoming segment has the same slope as the outgoing segment of ci0, and c

i
0 was not a π-corner).

Finally, if γ0 has a true corner of type (c) then there is a straight line segment through the puncture
in the square tile such that both endpoints lie strictly outside of this corner. Up to reparametrization
we may assume this line is horizontal, so that the corner represents a local maximum of γ0. Being
a closed curve, γ0 must also have a local minimum, and a corner at which a local minimum occurs
is necessarily type (d). Thus the true corner c1 contributes at least two intersections to i(γ0,γ1).

If the fixed corner c1 of γ1 is a π-corner, a similar argument shows the contribution is at least one.
Note that any type (b) or (d) corner in γ0 contributes at least one intersection point with c1. Any
corner that is type (c) with respect to c1 must be a π-corner, and by assumption γ0 has at least
one true corner, so we are left with considering a true type (a) corner ci0. In this case, the endpoints
xiin or xiout lie on the inside of c1, and at least one of them is strictly on the inside c1 (in the sense

that it is at least a distance of 4
√
2ϵ from the points sin or sout). Suppose x

i
out lies strictly inside of

c1; it follows that x
i+1
in lies strictly on the outside of c1 and ci+1

0 is type (b) or (d), contributing the
needed intersection point.

Finally, we show that that a loose component of γ1 contributes at least one intersection. Indeed, if
it did not then γ0 would have to lie in a neighborhood of a line with the same slope as the loose
component, but this would imply that γ0 is a Heegaard Floer solid torus. This completes the proof
of equation (5).

We first consider the case that neither M0 nor M1 is a Heegaard Floer solid torus. Equation (5)
then implies that i(γ0,γ1) ≥ 4. Suppose that i(γ0,γ1) = 4. By Equation (5) we must have that γ1

contains a single component with exactly two corners, and thus exactly two segments in a singular
pegboard diagram. Interchanging the roles of M0 and M1 we see that the same is true for γ0. It
is also clear that neither curve can carry a non-trivial local system, since this would multiply the
number of intersection points by the dimension of the local system. Let p1 and p2 be the slopes of
the two segments in a singular peg-board diagram for γ0, and let q1 and q2 be the slopes of the
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Figure 59. The pairing of γ0 (gray) consisting of two segments of slopes 0 and ∞ with γ1 (black)

consisting of two segments of slopes 1 and ∞, shown both in the torus and in the covering space
R2 \ Z2. This corresponds to a gluing of two trefoil complements. The result of the gluing is an

integer homology sphere, since there is ±1 intersection point counted with sign. Note that, for the

purposes of illustration, neither curve is pulled tight.

two segments for γ1. Observe that, since neither curve is a Heegaard Floer solid torus, p1 ̸= p2 and
q1 ̸= q2.

The intersection points counted so far all occur at the corners; as ϵ goes to zero in an ϵ-pegboard
diagram, these intersection points approach the puncture. We will now consider intersections away
from the corners. We observe that any two segments of slope r1 and r2 in the singular pegboard
diagram intersect d times, where d = ∆(r1, r2) is the distance between the slopes (calculated by
taking minimal geometric intersection number). One of these intersection points is at the endpoints,
but the remaining d− 1 intersection points occur in the interior of the segments; these intersections
remain in an ϵ-pegboard diagram and are a finite distance from the peg. It follows that if i(γ0,γ1) =
4 then ∆(p1, q1), ∆(p1, q2), ∆(p2, q1), and ∆(p2, q2) are all at most 1. First suppose that the four
slopes p1, p2, q1, and q2 are all distinct. Up to reparametrization, we may assume p1 = ∞; it follows
that q1 and q2 are distinct integers. Since p2 is distance 1 from each of these and distinct from ∞,
we must have p2 = n, q1 = n− 1 and q2 = n+1. This case is ruled out, because it would imply that
the rational longitude λ1 of M1 has order two, but as above this implies the existence of another
component and gives i(γ0,γ1) > 4. Now instead suppose both curves have a segment of the same
slope; up to reparametrization and reindexing, we may assume p1 = q1 = ∞. It follows that p2 and
q2 are integers, with |p2 − q2| ≤ 1. Up to reparametrization and switching the roles of γ0 and γ1,
we may assume that p2 = 0 and q2 is either 0 or 1. In the first case, the curves γ0 and γ1 coincide.
This is the one setting in which an ϵ-pegboard diagram does not give transverse intersection but,
perturbing slightly from an ϵ-pegboard diagram, it is a simple exercise to check that the minimal
intersection i(γ0,γ1) is 4. However, in this minimal position there is an immersed annulus, so
achieving admissibility requires adding two additional intersection points and dimHF (γ0,γ1) = 6.
The remaining case is depicted in Figure 60 and has 5 intersection points.

We next consider the case that M1 is a Heegaard Floer solid torus but M0 is not. If γ1 has true
corners, the argument above applies so that i(γ0,γ1) > 4 unless γ1 has a single component and
exactly two corners. It is easy to see that such a curve cannot be the invariant of a Heegaard Floer
solid torus. If both segments in a singular peg-board diagram have the same slope then either the
curve is nullhomologous or it is homologous to twice a primitive curve; in the first case there must
be another component since γ1 is homologous to the rational longitude λ1 of M1, and in the second
case there must be another component because if λ1 has order two there are at least two spinc

structures of M1. We conclude that γ1 has only π-corners. It is still the case that each π-corner of
γ1 and each loose component of γ1 contributes one to i(γ0,γ1); in fact, a loose component that is
p times a primitive curve contributes at least p intersection points. If p is the order of the rational
longitude of M1, then γ1 has at least p components which each contribute at least p intersection
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points, so i(γ0,γ1) ≥ p2. If i(γ0,γ1) < 5 then p = 2 and γ1 has exactly two components, each
of which is one of the two curves associated with the twisted I-bundle (see Figure 54). Since M1

has incompressible boundary, at least one of the components of γ1 is tight. It is now a simple
exercise that i(γ0,γ1) ≥ 6. The lower bound of four given previously records two intersections with
a loose component and two intersections near corners in a tight component. However, if γ0 has two
segments with slope different from the slope of λ1 then there will be two type (d) corners, and if one
segment of γ0 has the same slope as λ1 this segment will have two additional intersection points, so
the tight component of γ0 contributes at least four intersections.

The final case to consider is when both M0 and M1 are Heegaard Floer solid tori; that is, each
multicurve pulls tight to a straight line in a singular pegboard diagram. These curve-sets may be
divided into sets of loose and tight components. By irreducibility and Proposition 7.13, both γ0

and γ1 must have at least one tight component. We claim that each multicurve must also have at
least one loose component. In fact, each must have a loose component for which the associated local
system has 1 as an eigenvalue (note that when discussing local systems on loose components we will
assume the underlying curve is primitive by applying Lemma 4.8 if needed). To see this, consider
pairing with Li, a simple closed curve in ∂Mi representing the rational longitude λi of Mi. The
loose curve Li pairs trivially with any tight component of γi, since the curves can be made disjoint
without any immersed annuli. Any loose component of γi decorated with a local system A pairs
with Li to give Floer homology of dimension 2 dim(ker(I + A)); if I + A is invertible (equivalently
if 1 is not an eigenvalue of A) then this contribution is again trivial. Since the Floer homology

HF (γi, Li) computes ĤF of the Dehn filling Mi(λi), which must be nontrivial, there must be at
least one component of γi which is loose and with 1 as an eigenvalue of the local system.

Figure 60. Pairing two twisted I-bundles over
the Klein bottle: At left, the loose components

contribute two intersections and the tight com-

ponents contribute two intersections. Imposing
admissibility to the tight components as on the

right, brings the intersection number to 6.

Let pi be the order of the rational longitude λi ofMi. Re-
call that γi has at least pi components, each homologous
to at least pi copies of λi. From this it easily follows that if
Y is a rational homology sphere, i(γ0,γ1) ≥ p20p

2
1. More-

over, if a tight component of γi has only π-corners then
pi must be at least two, and if this holds for both curves
then i(γ0,γ1) ≥ 16 for a rational homology sphere gluing.
There are a few pathological examples to consider (which
likely do not arise from manifolds) of tight Heegaard Floer
solid torus curves with pi = 1, but such curves traverse
the underlying primitive curve at least three times and
still give a lower bound of 9 for rational homology sphere
gluings. The more interesting case is when h(λ1) = λ0; we will reparametrize so that both curves
are horizontal. In this setting, any pair of tight components contribute at least two intersection
points to Floer homology; to see this note that each curve must pass above the peg at least once
and below the peg at least once, and a (rightward moving) segment moving from a corner below the
peg to a corner above the peg always intersects a segment moving from a corner above the peg to
a corner below the peg. Any pair of loose curves with local systems A0 and A1 for which 1 as an
eigenvalue also have Floer homology of dimension at least two. Although the minimal intersection
number is zero, by Corollary 4.10 the dimension of Floer homology is given by 2 ker(I + A0 ⊗ A1);
since 1 is an eigenvalue of both A0 and A1, it is also an eigenvalue of A0 ⊗A1 and so I +A0 ⊗A1 is
singular. To summarize, if xi is the number of tight components of γi and yi is the number of loose
components of γi with 1 as an eigenvalue of the local system, then dimHF (γ0,γ1) is bounded below
by 2x0x1 +2y0y1. The discussion above ensures that xi and yi are both nonzero for i = 0, 1, and so
this bound is at least 4. Moreover, the bound is only 4 if x0 = x1 = y0 = y1 = 1. In this case, both
rational longitudes must have order two (since each multicurve has only two components), and there
is a unique tight curve which wraps twice around the torus following the horizontal line. Since the
tight component of γ0 is commensurate with the tight component of γ1, one can check that pairing
these curves in fact contributes at least 4 to dimHF (γ0,γ1), raising the lower bound in this case to
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6. Note that this bound can be realized by letting M0 and M1 both be twisted I-bundles over the
Klein bottle; this example is shown in Figure 61. □

The case in Figure 60 is realized by gluing two trefoil complements. For instance, it arises from
gluing the complement of two right handed trefoil complements by identifying 0-framed longitude
with meridian and meridian with 1-framed longitude. This provides an example of a toroidal integer

homology sphere Y realizing dim ĤF (Y ) = 5.

With this example in hand, consider the function f taking values in the natural numbers defined by

f (n) = min{dim ĤF (Y ) |Y is a rational homology sphere with n separating JSJ tori}

and note that f (0) = 1 (realized by the three-sphere or the Poincaré homology sphere) and f (1) = 5
(realized by gluing two trefoil exteriors as in Theorem 7.20, see Figure 60). For Heegaard Floer
aficionados, we propose:

Question 7.16. Is it possible to determine f or describe properties of f as n grows?

If we further assume that Y is an L-space, we can in fact strengthen the result of Theorem 1.8 by

enumerating all examples with dim ĤF (Y ) < 7; see Theorem 7.20. This will make use of a result
specific to L-spaces. Toward establishing this result, we now turn our attention to properties of the
immersed curve invariants relevant to L-spaces.

7.5. Characterizing L-space slopes. Given a manifold with torus boundary M , let LM denote
the set of L-space slopes, that is, the subset of slopes giving rise to L-spaces on Dehn filling, and let
L◦
M denote the interior of LM . This section gives a characterization of the set L◦

M in terms of the

collection of curves ĤF (M).

Given a spinc structure s on M , we will define a set of slopes S(M, s) ⊂ RP 1 associated with the

multicurve ĤF (M, s). For each ϵ > 0, we consider an ϵ-pegboard diagram for the curves ĤF (M, s).

If ĤF (M, s) has single component equipped with the trivial local system we define Sϵ(M, s) as

the set of tangent slopes of the ϵ-pegboard representative of ĤF (M, s). Otherwise, if ĤF (M, s) is
disconnected or has a non-trivial local system we define Sϵ(M, s) to be all of RP 1. Note that when
computing the set of tangent slopes in a ϵ-pegboard diagram, it is convenient to lift to the covering
space TM . We now define S(M, s) by taking ϵ → 0, in the sense that S(M, s) =

⋂∞
n=N S 1

n
(M, s).

We define S(M) to be the union of S(M, s) over all spinc structures.

We can define a related set Ssing(M, s) using a singular pegboard diagram. If ĤF (M, s) has a single
component carrying a trivial local system, Ssing(M, s) is the set of slopes of tangent lines to the
singular peg-board representative, where we say a line L through a corner is a tangent line if L
coincides with one of the two segments at that corner or if both segments lie on the same side of L.

As with S(M, s), we set Ssing(M, s) = RP 1 if for some Spinc structure s, ĤF (M, s) has more than
one curve or a non-trivial local system. It is straightforward to see that S(M) = Ssing(M) when

ĤF (M) does not wrap any pegs. A priori, it seems like the two sets may differ in the presence of
peg-wrapping, but we will prove in Corollary 7.19 below that if there is any peg-wrapping, we must
have Ssing(M) = S(M) = RP 1.

Using tangent slopes in peg-board diagrams, we can give a new interpretation of L-space slopes for
a loop-type manifold.

Theorem 7.17. If M is a manifold with torus boundary then L◦
M is the complement in QP 1 of the

set SsingQ (M) = Ssing(M) ∩QP 1.
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Proof. By the pairing theorem, ĤF (M(α)) is equivalent to the intersection Floer homology of

ĤF (M) and a straight line with slope α, which we denote Lα. Suppose first that α is a non-L-
space slope, so that the Dehn filling M(α) is not an L-space and there is some spinc-structure s̄ of

M(α) so that dim ĤF (M(α); s̄) > 1. It follows that (for any homotopy representative of ĤF (M))

there are two intersection points x and y between ĤF (M) and the line Lα with the same spinc-
grading. This means that x and y correspond to intersection points x̃ and ỹ between (a lift of)

Lα and ĤF (M, s) in the covering space R2 \ Z2, for some spinc-structure s of M . If ĤF (M, s)

contains more than one curve then Ssing(M) = RP 1 by definition and α ∈ SsingQ (M), so suppose

that ĤF (M, s) contains a single curve. The intersection points x̃ and ỹ exist for any homotopy

representative of ĤF (M, s) (in particular the pegboard representatives for arbitrarily small ϵ) and
since Lα can be taken to be some finite distance away from every peg, we can in fact take x̃ and ỹ

to be intersections of the singular peg-board representative of ĤF (M, s) with a lift of Lα. Note that

the corners of the singular representative for ĤF (M, s) can be smoothed without affecting intersec-
tions with Lα and that Ssing(M) is precisely the set of tangent slopes after this smoothing. By the
(extended) mean value theorem, there is a point on the smoothing of the singular representative of

ĤF (M, s) for which the tangent line has slope α. We conclude that α ∈ SsingQ (M) as claimed. We

have proved that LcM ⊂ SsingQ (M); in fact, since SsingQ (M) is closed (as a subset of QP 1), we have

LcM = (L◦
M )c ⊂ SsingQ (M).

Figure 61. Intersection

points for a slope in
Ssing(M).

Conversely consider a slope α in SsingQ (M). We will work with the singular

peg-board representative of ĤF (M). If Ssing(M) = {α}, then α is the
rational longitude of M and thus not an L-space slope. Otherwise, α is
in the interval of tangent slopes determined by some corner c; let s1 and
s2 denote the two line segments meeting at c. First suppose α is in the
interior of the interval for the corner c. Let Lα be the line of slope α
through c; since Lα is a tangent line, s1 and s2 both lie on one side of line
Lα. Let L

′
α be a small pushoff of Lα that intersects the segments s1 and s2

and is disjoint from all lattice points. For sufficiently small ϵ (smaller than
the minimum distance between L′

α and any lattice point), replacing the singular representative for

ĤF (M) with the radius ϵ peg-board representative preserves these two intersection points. These
points give two generators with the same spinc grading in the intersection Floer chain complex of

ĤF (M) with L′. Since both L′
α and ĤF (M) are ϵ-pegboard representatives, they are in minimal

position and both generators survive in homology. It follows that M(α) is not an L-space, that is,
α ̸∈ LM . Now suppose α is a boundary of the interval of slopes determined by the corner c; there
are slopes arbitrarily close to α in the interior of this interval, and these slopes are not in LM , so
α ̸∈ L◦

M . □

Theorem 7.17 is in fact true for arbitrary immersed curves in T (using an appropriate definition of
the set of L-space slopes for a curve), not just for the collections of curves associated with manifolds.
For curves arising from manifolds, however, we can replace Ssing(M) with S(M). To prove this, we
first make the following observation about Floer simple manifolds:

Lemma 7.18. If M is Floer simple then S(M) ̸= RP 1.

Proof. If M is Floer simple, then by [21, Proposition 6] M has simple loop type, that is, for some

parametrization (α, β) of ∂M , ĈFD(M,α, β) is a collection of loops (one for each Spinc structure
on M) consisting only of ρ1, ρ3 and ρ23 arrows. It follows that the corresponding curves in the
plane travel only up and right. Clearly S(M) contains only positive slopes (relative to the chosen
parametrization), and so S(M) ̸= RP 1. Note that reparametrizing the boundary changes this
interval but does not change whether or not it is all of RP 1. □

Corollary 7.19. For any manifold M , S(M) = Ssing(M).
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Proof. First observe that if M is not loop type (that is, the associated invariant carries a non-
trivial local system) then Ssing(M) = S(M) = RP 1 by definition. Consider then the case when M
is loop type. In the absence of peg-wrapping S(M) = Ssing(M). If there is peg-wrapping, then
S(M) = RP 1, and by Lemma 7.18, M is not Floer simple. Equivalently, L◦

M = ∅ and by Theorem
7.17 Ssing(M) = RP 1. □

We remark that, as an immediate corollary of Theorem 7.17, the set L◦
M is either empty, an open

interval with rational endpoints, or all of QP 1 but the rational longitude λ; this is because S(M)
contains at least λ and is a closed interval. More generally, it is possible to characterize the set
LM in terms of the tangent slopes in a singular peg-board diagram: roughly speaking, LM is the
complement of the set S′(M) obtained by taking the union over all corners of the interior of the set
of tangent slopes determined by the corner, with the convention that a degenerate corner with two

segments of slope α contributes RP 1 \ {α}, along with the slope of any segment such that ĤF (M)
turns left at both of the corners connected by the segment or turns right at both corners. It follows
that LM is either empty, a single point, a closed interval with rational endpoints, or QP 1 \ {λ}; this
recovers [46, Theorem 1.6] (see also [23, Theorem 1.2]).

7.6. The L-space gluing theorem. We now turn to the proof of Theorem 1.14. In previous works
[23, 46, 21] the authors and S. Rasmussen prove this L-space gluing criterion when the manifolds
have simple loop type (equivalently, when the manifolds are Floer simple). Interpreting bordered
Floer homology as immersed curves with local systems allows us to give an elegant proof of this
gluing theorem without requiring the simple loop type hypothesis on the manifolds.

Proof of Theorem 1.14. By the pairing theorem, M0 ∪h M1 is equivalent to the intersection Floer

homology of γ0 = ĤF (M0) and γ1 = h̄(ĤF (M1)). Suppose first that M0 ∪h M1 is not an L-

space, implying that there is some s so that dim ĤF (M0 ∪h M1, s) > 1. In other words, there are
two intersection points x and y between γ0 and γ1 with the same spinc grading. This means, in

particular, that x and y are intersection points of γ0,s0 = ĤF (M0, s0) and γ1,s1 = h̄(ĤF (M1, s1))
for some s0 ∈ Spinc(M0) and s1 ∈ Spinc(M1). We will assume for i ∈ {0, 1} that γi,si contains only

one curve with a trivial local system, since otherwise L◦
Mi

is empty and L◦
M0

∪ h(L◦
M1

) ̸= QP 1. Let
c0 be the path from x to y in γ0,s0 and let c1 be the path from x to y in γ1,s1 . The fact that x and
y have the same spinc grading implies that [c0 − c1] = 0 ∈ H1(T ), or equivalently that the paths lift
to form a bigon in R2, the corners of which are lifts x̃ and ỹ of x and y. Let α be the slope of the
line segment connecting x̃ and ỹ. By the (extended) mean value theorem, c̃0 and c̃1 each contain a
point with slope α.

This argument applies for any homotopy representative of γ0 and γ1. In particular, if we take
ϵ-pegboard diagrams relative to peg radius ϵ = 1

n we find a slope αn that is a tangent slope to both
curves. It follows that αn ∈ S 1

n
(M0)∩h(S 1

n
(M1)). Here, by abuse of notation, h refers to the map on

slopes induced by h; note that, as maps on slopes, h̄ and h agree since the elliptic involution preserves
slopes. Since S 1

n
(M0)∩h(S 1

n
(M1)) for positive integers n gives a nested sequence of nonempty closed

sets there is some slope α in the total intersection, which is simply S(M0) ∩ h(S(M1)). Moreover,
we can take this α to be rational, since S(M0) and h(S(M1)) have rational endpoints. By Theorem
7.17 and Corollary 7.19, SQ(M0) = (L◦

M0
)c and SQ(M1) = (L◦

M1
)c. Thus α is not in L◦

M0
∪ h(L◦

M1
).

Conversely, suppose that there is a slope α not in L◦
M0

∪h(L◦
M1

). Equivalently, α is in both SsingQ (M0)

and h(SsingQ (M1)), so α is a tangent slope of both γ0 and γ1 in a singular pegboard diagram. Let
c0 and c1 be components of γ0 and γ1, respectively, for which α is a tangent slope to the singular
pegboard representative. We may assume that c0 and c1 are not solid torus like components. If, for
example, c0 were solid torus like then α would be the rational longitude of M0 and every component
of γ0 would have a tangent line of slope α; we could then replace c0 by another component, at least
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one of which is not solid torus like because M0 is not solid torus like. By reparametrizing ∂M0 and
∂M1, we may assume that α = 0.

Fixing a small peg radius ϵ, consider ϵ-pegboard representatives of c0 and c1 with a chosen orientation
on each curve. Recall that each corner wraps around a circle of different radius between ϵ and 2ϵ,
with corners that change direction more wrapping closer to the puncture (as usual, if two radii agree
we perturb one of them slightly to achieve transversality). Since c0 and c1 are in minimal position,
to show that M0 ∪h M1 is not an L-space it is enough to find two intersection points between c0
and c1 with opposite Z/2Z-grading. It is easy to find two such generators if both curves have peg-
wrapping. In this case the curves c0 and c1 each contain a portion of sucrve bounding a teardrop
enclosing the puncture. Suppose the relevant corners of c0 and c1 wrap around circles radius ϵ0 and
ϵ1 around the puncture. Suppose, without loss of generality, that ϵ0 < ϵ1, so that the circle of radius
ϵ0 is contained in the teardrop bounded by c1. The curve c0 also contains two line segments tangent
at their ends to the circle of radius ϵ0, one oriented toward the circle and one oriented away from
it. These two segments clearly intersect the teardrop portion of c1 with opposite sign, and the two
corresponding generators of HF (γ0,γ1) have opposite Z/2Z grading. Thus we may assume that
there is no peg-wrapping in c0.

In the singular peg-board diagram for c0, the line segments connecting corners can be classified
as moving upwards, downwards, or horizontally (once we have fixed an orientation on c0). The
segments can not be all upward or all downward, since then α = 0 would not be a tangent slope. If
the slopes are not all horizontal, we can choose a corner so that the segments preceding and following
the corner are up and down, up and horizontal, or horizontal and down. Note that the corresponding
corner in an ϵ-pegboard diagram for c0, which we suppose wraps around a circle of radius ϵ0, has a
point of horizontal tangency on the top side of that circle at the point (0, ϵ0). If every line segment
in c0 is horizontal, then every corner has horizontal tangency to the peg, and we can chose the corner
so that this point of tangency is on the top side of the peg. Moving away from this point of tangency
in either direction, c0 moves either horizontally or downwards. If it moves horizontally it wraps
once around the torus and returns to the peg at another horizontal tangency on the top of the peg;
after some number of horizontal segments like this, c0 must move downwards. Thus, c0 contains an
upward moving piece cI0 oriented toward the point (0, ϵ0) and a downward moving piece cO0 oriented
away from (0, ϵ′0), where ϵ

′
0 = ϵ0 if there are no horizontal segments in between. Combining cO0 and

cI0 gives a curve segment as in Figure 63(a); note that if there are horizontal segments in between
cO0 and cI0 we ignore them—in this case the endpoints do not match up perfectly since ϵ′0 ̸= ϵ0, but
by extending one segment until it crosses the other one we get a piecewise smooth version of the
segment in Figure 63(a). Similarly, we can choose a corner of c1 such that the preceding segment
in the singular pegboard diagram moves downward or horizontally and the following segment moves
horizontally or upward, and such that in an ϵ-pegboard diagram there is a horizontal tangency to
the peg at (0,−ϵ1). Let cI1 be the horizontal or downward piece of c1 oriented toward (0,−ϵ1)
and let cO1 be the horizontal or upward piece oriented away from (0,−ϵ1) (or, potentially, (0,−ϵ′1)),
as in Figure 63(b). Note that we ignore any full wraps around the peg as well as any horizontal
segments between cI1 and cO1 . We consider these curves in one fundamental domain of T , the square
[− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ]. The intersection of cI0 and cO0 with the boundary of this square can be any point

with non-positive y-coordinate; the intersection of cI1 and cO1 with the boundary of this square can
have any non-negative y-coordinate or y-coordinate −ϵ1. It is clear that if both cI0 and cO0 intersect
the boundary of the square [− 1

2 ,
1
2 ] × [− 1

2 ,
1
2 ] with strictly negative y-value or if both cI1 and cO1

intersect the boundary of the square with strictly positive y-value (equivalently, if the corresponding
segments in the singular diagram are not horizontal), then there are two intersections points with
opposite Z/2Z grading (see Figure 63(c)).

The remaining case is when one of the specified segments in both c0 and c1 correspond to horizontal
segments in a singular diagram. We consider the case that cO0 and cO1 are both horizontal moving
to the right (see Figure 64); cases when the incoming segments or both segments are horizontal are
similar. In this case, we do not get two intersection points of cI0 ∪ cO0 and cI1 ∪ cO1 if we restrict to
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cI0

cO0 cI1
cO1

(a) (b) (c)

Figure 62. (a) The segments cI0 and cO0 in c0; these segments can enter/leave the square anywhere

in the bottom half of its boundary. (b) The segments cI1 and cO1 in c1; these segments can

enter/leave the square anywhere in the top half of its boundary or though the points (± 1
2
,−ϵ1).

(c) The combined curve segments cI0 ∪ cO0 and cI1 ∪ cO1 have two intersections of opposite signs if

the endpoints of cI0 and cO0 are strictly in the bottom half of the square or if the endpoints of cI1
and cO1 are strictly in the top half of the square.

(a) (b)

Figure 63. The combined segments cI0∪cO0 and cI1∪cO1 in an ϵ-pegboard diagram when cO0 an cO1
both correspond to horizontal segments in singular diagrams for c0 and c1. There are two cases,

depending on which curve wraps with smaller radius at the next corner; in either case there are
two intersection points between c0 and c1 with opposite sign.

one fundamental domain of T . However, cO0 and cO1 both wrap once around T horizontally, leading
to new corners of c0 and c1, respectively. Let ϵ′′0 and ϵ′′1 be the peg radii associated with these two
corners. If ϵ′′1 < ϵ′′0 , then c

O
0 intersects cO1 before reaching the next corner (Figure 64(a)). If ϵ′′1 > ϵ′′0 ,

then c1 must not have peg-wrapping at this corner. It follows that c1 must continue by leaving
the peg horizontally or upwards. If it leaves the peg moving upwards, it will intersect with cI0 ∪ cO0
(Figure 64(b)). If it leaves the peg horizontally, it wraps around T once more to a new corner with
some radius ϵ′′′1 , and we repeat the argument using this corner in place of the corner with radius
ϵ′′1 . In either case, we find two intersection points between c0 and c1 with the opposite sign, as
desired. □

7.7. Enumerating toroidal L-spaces. As our first application of the L-space gluing theorem, we
classify small toroidal L-spaces.

Theorem 7.20. If Y is a prime toroidal L-space then |H1(Y )| = 5 or |H1(Y )| ≥ 7. Moreover, if
|H1(Y )| = 5 then Y is one of precisely 4 manifolds obtained by gluing trefoil exteriors.
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Proof. We begin by setting conventions. Consider manifolds M0 and M1 with torus boundary, and
let h : ∂M1 → ∂M0 be an orientation reversing homeomorphism. Since we are interested in rational
homology spheres Y =M0∪hM1, we may assume that bothM0 andM1 are rational homology solid
tori, with slopes λi ∈ ∂Mi representing the rational longitude for i = 0, 1. Recall that

|H1(M0 ∪hM1;Z)| = t0t1|λ0||λ1|∆(λ0, h(λ1))

where ti is the order of the torsion subgroup of H1(Mi;Z) and |λi| is the order of λi in H1(Mi;Z).
The integer ∆(λ0, h(λ1)) is the distance between the relevant slopes, that is, the minimal geometric
intersection in ∂M0. If we fix Spinc structures si on Mi, the quantity |λ0||λ1|∆(λ0, h(λ1)) is the
number of Spinc structures on Y that restrict to s0 on M0 and s1 on M1.

SinceMi is boundary incompressible, there is at least one si ∈ Spinc(Mi) for which γi = ĤF (Mi, si) is
not loose. The argument used in the proof of Theorem 1.8 shows that the curves representing γ0 and
γ1 intersect in at least four points. Since Y is an L-space, this implies that |λ0||λ1|∆(λ0, h(λ1) ≥ 4.
To have |H1(Y ;Z)| ≤ 6, we must have t0 = t1 = 1, i.e. both Mi are integer homology solid tori.

By abuse of notation we identify h with a matrix ( s rq p ), acting on the right, where (1, 0) is identified
with λ1 and (0, 1) represents a meridian µ1. With this notation, one checks that |r| = ∆(λ0, h(λ1)).
Towards minimizing |H1(M0∪hM1;Z)|, we may assume that theMi are integer homology solid tori,
so that |λ0| = |λ1| = 1 and |H1(M0 ∪hM1;Z)| = |r|.

Now suppose that Y is an L-space; the intervals Li = LMi
are necessarily non-empty. Since

H1(Mi) = Z, theMi cannot be Floer homology solid tori. Let biλi+aiµi be an endpoint of Li, where
without loss of generality we assume ai > 0. The characterization of Li proved in [46] implies that
Li is contained either in the interval [ai/bi, ai/(bi + 1)] or in the interval [ai/(bi − 1), ai/bi]). (Here
our notation denotes the cyclic interval not containing 0 with the given endpoints.) By choosing
µi appropriately, we may assume that 0 > bi > −ai in the first case, and that 0 < bi < ai in the
second, so that Li ⊂ [−∞,−1] or Li ⊂ [1,∞]. Finally, by reversing the global orientation on Y , we
may assume that L1 ⊂ [1,∞].

We consider the images h(0, 1) = (q, p), h(1, 0) = (s, r), and h(1, 1) = (q + s, p + r) relative to the
interval of slopes L0. If Y is an L-space then we must have 1 < h(α) < ∞ for each of these slopes
or −∞ < h(α) < −1 for each of these slopes.

First consider the case where L0 ⊂ [1,∞]. Then

1 < p
q <∞ ⇒ 1 < |q| < |p|

1 < r
s <∞ ⇒ 1 < |s| < |r|

where p and q have the same sign and r and s have the same sign. Similarly, considering the inverse
homeomorphism h−1 =

(−p r
q −s

)
,

1 < − s
q <∞ ⇒ 1 < |q| < |s|

1 < − r
p <∞ ⇒ 1 < |p| < |r|

so that p and r have opposite signs and q and s have opposite signs. Additionally, note that
det(h) = ps− qr = −1 since h reverses orientation. Without loss of generality, we may assume that
r > 0; one checks that there are no matrices with r = 1, 2 satisfying this list of constraints.

When r = 3, 4 the only possible matrices are
(

2 3
−1 −2

)
,
(

3 4
−2 −3

)
. However a homeomorphism of the

form
(
r−1 r
2−r 1−r

)
is always ruled out since h(1, 1) = (1, 1) in this case (so a boundary L-space slope is

not mapped to an interior L-space slope, as required). The same argument applies in the case r = 6
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From this discussion we observe that in fact we seek to list matrices with determinant −1 satisfying
1 < p+r

q+s <
r
s <

p
q < ∞. For r = 5, this leaves

(
3 5
−1 −2

)
and

(
2 5
−1 −3

)
as a complete list of possible

L-space gluings in this case.

The case where L0 ⊂ [−∞,−1] is similar. Potential examples of L-spaces for which r < 5 or r = 6
are ruled out, by the requirement that −∞ < p+r

q+s <
r
s <

p
q < −1, leaving

(−3 5
2 −3

)
and

(−2 5
1 −2

)
as

a complete list of L-space gluings for r = 5.

Next, we claim that in each of these four cases, we must have L1 = [1,∞]. We provide the argument
when h is given by ( s rq p ) =

(
2 5
−1 −3

)
; the other cases are very similar. As observed above, if a/b is

the right endpoint of L1, then L1 ⊂ [a/(b + 1), a/b]. Since neither µ0 nor λ0 + µ0 are elements of
L◦
0 both h−1(µ0) and h−1(λ0 + µ0) must be contained in L◦

1. We calculate that this includes the
slopes − s

q = 2 and r−s
q−p = 3

2 , respectively, in the set L◦
1, and deduce that a

b+1 <
3
2 and a

b > 2 or,

equivalently, b
a + 1

a >
2
3 and b

a <
1
2 . It follows that a < 6, and a direct check shows that there are

no open intervals (a/(b+ 1), a/b) with 0 < b < a < 6 containing both 3
2 and 2. Thus the right-hand

endpoint of L1 is ∞, which implies that M1 has an integer-homology sphere L-space filling. In turn,
this implies that L1 = [2g−1,∞], where g is the genus ofM1. Since

3
2 , 2 ∈ L◦

1 it must be that g = 1.

Reversing the roles ofM0 andM1, we see that L0 = [1,∞] or L1 = [−∞,−1]. In either case, bothM0

andM1 are prime, boundary incompressible and have two different L-space homology sphere fillings.
It follows from work of Ghiggini [14] that they are both homeomorphic to trefoil complements. □

We expect that there will only be finitely many toroidal L-spaces with |H1(Y )| = 7, but cannot prove
it, since we can’t classify Floer simple manifolds with the same Alexander polynomial as T (2, 5). In
contrast, it is possible to obtain infinitely many toroidal L-spaces with |H1(Y )| = 8 by gluing the
trefoil complement to the twisted I-bundle over the Klein bottle.

7.8. Satellite L-space knots. Given a pattern knot P and a companion knot C, both in the
three-sphere, denote by P (C) the result of forming a satellite knot (note that this depends on some
additional choices). The following is a conjecture of Hom, Lidman, and Vafaee [28, Conjecture 1.7]:

Conjecture 7.21. If P (C) is an L-space knot, then P and C are L-space knots as well.

To conclude the section we prove that this conjecture holds.

Proof of Theorem 1.15. Consider the toroidal L-space Y resulting from surgery on a satellite knot
K and write Y = M0 ∪h M1. By Theorem 1.14, L◦

M0
∪ h(L◦

M1
) = QP 1 so that the manifolds M0

and M1 are, in fact, Floer simple manifolds (that is, the sets L◦
Mi

are non-empty). In particular, M0

the complement of an L-space knot C in S3 (the companion knot). Since the Seifert longitude λC
of C is not an L-space slope, it must be that λC ∈ h(L◦

M1
) so that αP = h−1(λC) gives an L-space

M1(αP ).

Now consider the pattern knot P in D2 × S1, obtained from MK \ M0, where the boundary of
D2 × S1 is framed so that αP ≃ {pt} × S1. Note that filling this manifold along αP gives a knot in
S3 (the pattern knot), which we will also denote by P . Further, P must be an L-space knot since
there is more than one choice α, which existed by Floer simplicity of MK (and was required for the
construction of Y ). This establishes the conjecture. □

There is a converse to this statement that only requires a weaker version of the L-space gluing
theorem from [21]; see Hom [27].
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Appendix A. Three-manifold invariants are extendable

We outline the proof of Theorem 1.4, which is mainly a matter of assembling the correct elements
from [39] and checking that they still apply in our situation. We will assume the reader is familiar
with the notation and terminology of [39].

Suppose that (M,α1, α2) is a compact oriented three-manifold with parametrized T 2 boundary, and
that H = (Σ, α, β) is a bordered Heegaard diagram representing it. (There is a notation clash here
with our previous use of α, β for the parametrization.)

Our first step is to describe the moduli spaces of pseudo-holomorphic maps used to defined the

generalized coefficient maps DI . The extended torus algebra Ã has a natural basis ⟨ρI⟩, where
each ρI corresponds to a Reeb chord on the ideal contact boundary Z = ∂Σ. Suppose that x, y
are generators for H, that B ∈ π̃2(x, y), and that ρ⃗ is a sequence of Reeb chords whose product is
equal to ρI . (Here, the notation π̃2 indicates that we consider domains which may have nonzero
multiplicity at z, as in [39, Section 10.2]).

We consider decorated sources as in [39, Definition 5.2], but with boundary punctures labeled by
arbitrary Reeb chords ρI on Z, including those which pass through the basepoint z. (Sources of
this type are not sufficient for a bordered theory of HFK−, since they lack interior punctures, but
they are good enough for our needs.) Given a decorated source S▷ we can consider the moduli space

M̃B(x, y;S▷) of pseudoholomorphic maps U : S → Σ× [0, 1]×R which represent the homology class
B as in [39, Definition 5.3], but omitting axiom (M-9) (the requirement that S has 0 multiplicity

near the basepoint). Similarly, if P⃗ is an ordering of the punctures of S, we can consider the open

subset M̃B(x, y;S▷; P⃗ ) for which projection to the R direction induces the given ordering P⃗ . Finally,

we let MB(x, y;S▷; P⃗ ) be the corresponding reduced moduli space.

Most of the analysis of pseudo-holomorphic curves in [39, Sections 5.2-5.6] carries over unchanged
to this context, with the notable exception of the fact that boundary degenerations (see [39, Lemma
5.48]) can (and do) occur. More specifically, the proof of [39, Lemma 5.48] relies on the fact that
π2(Σ, α) = 0. Since we are allowing sources whose boundary maps to ρ0, we must instead consider

π̃2(Σ, α) = Z. The generator of this group is the domain [Σ], whose boundary is
∑3
i=0 ρi. (Notice

that since we do not allow sources with interior punctures, π̃2(Σ, β) = 0.)

Now suppose we are given a sequence of Reeb chords ρ⃗ and that B is compatible with ρ⃗ in the
sense of [39, Definition 5.68]. Following [39, Definition 5.68], we let MB(x, y; ρ⃗) be the union of
those moduli spaces MB(x, y;S▷) whose constituent pseudo-holomorphic curves are embedded and

for which [P⃗ ] = ρ⃗.

Finally, following [39, Definition 6.3], we let

DI(x) =
∑
y

∑
{ρ⃗|a(−ρ⃗)=ρI}

∑
{B|ind(B,ρ⃗)=1}

#(MB(x, y; ρ⃗))y

and define ∂̃(x) =
∑
I ρI ⊗DI(x), where the sum runs over all indices I which contain at most one

0.

Proof of Theorem 1.4. We must show that ∂̃2(x) =W ⊗ x modulo terms of the form ρI ⊗ y, where
I contains at least two 0’s. To do so, we argue as in the proofs of [39, Proposition 6.7] and [39,
Proposition 11.30]. Write

∂̃2(x) =
∑
I

∑
y

nxy,IρIy.
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Fix y and I which contains at most one 0, and consider the moduli space

M(x, y; ρI) =
⋃

{ρ⃗|a(−ρ⃗)=ρI}

⋃
{B|ind(B,ρ⃗)=2}

MB(x, y; ρ⃗)

As in the proof of [39, Theorem 6.7], nxy,I is the mod 2 number of ends M(x, y; ρI) which do not
correspond to boundary degenerations.

Suppose that boundary degenerations appear as ends of M(x, y; ρI). Index considerations dictate
that such a degeneration must be of the form φ1∨φ2, where φ1 ∈ MB1 for some B1 ∈ π2(Σ, α) with
index k, and φ2 ∈ MB2 , where B2 ∈ π2(x, y) has index −k. Assuming we have chosen a generic
almost complex structure, all moduli spaces have their expected dimensions, and k = 0. Thus φ2

is a union of trivial strips. The domain of B1 is some multiple of the generator of π2(Σ, α). Since
0 occurs in I at most once, the domain of B1 must be Σ, which implies that |I| = 4. We conclude
that if |I| ≠ 4 or or x ̸= y, there are no boundary degenerations and nxy,I = 0. The case |I| = 4
and x = y was studied by Lipshitz, Ozsváth, and Thurston in [39, Proposition 11.30]. They showed
that the number of boundary degenerations in this case is equal to 1 mod 2, so nxy,I = 1. □
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