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We recently posted a paper explaining how, using a refinement of Khovanov cohomology, it is
possible to separate mutant pairs of knots in the presence of an appropriate involution. We
elaborate on these examples here.

The refinement in question associates with a knot K and a fixed strong inversion a triply

graded finite dimensional vector space K̃hτ (K) [3]. These integer gradings are denoted by i, j, k,
where i, j arise from filtrations associated to the usual bigradings on Khovanov cohomology. The
k-grading is, on the other hand, tightly connected with the strong inversion. We proved:

Theorem 1.2. There exist pairs of knots related by mutation, with identical Khovanov cohomology
and identical knot Floer homology, which can be distinguished from one another by the triply
graded refinement of Khovanov cohomology by appealing to an appropriate symmetry.

Figure 1. Strongly invertible diagrams D, Dµ
1 , Dµ

2 , and Dµ
3 (from left to right). The diagram D, representing

the knot K, highlights a tangle in the projection; rotating this tangle 180 degrees in the plane yields the mutant
knot of interest, denoted Kµ. Three diagrams for Kµ are shown; Dµ

1 and Dµ
2 are equivalent as involutive diagrams

[3, Definition 2.2] however, as we will show, Dµ
3 is a distinct strongly invertible diagram.

The proof is constructive. With this brief note, which will eventually be incorporated into [3],
we aim to clarify (and simplify) the construction used and to make explicit how infinite families
of such pairs can be readily obtained.

For concreteness, consider the knots K and Kµ described in Figure 1. Since K is an alternating
(non-torus) knot, it follows that K is hyperbolic; and since mutation preserves the property of
being alternating, Kµ is alternating as well. This observation allows us to conclude that K and
Kµ have identical knot Floer homology, since this invariant is determined by the Alexander
polynomial and the knot signature for alternating knots. Since K and Kµ are related by mutation,

it is also immediate that the Khovanov cohomologies agree K̃h(K) ∼= K̃h(Kµ) as bigraded vector
spaces [1, 4].

Now observe that on any given hyperbolic knot, there are at most two strong inversions [2,
Proposition 3.1]. Therefore if we can show that D, Dµ

1 (equivalently, Dµ
2 ), and Dµ

3 have mutually
distinct k-grading support, it follows that K and Kµ are not isotopic. It is a somewhat striking
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K Kµ

D Dµ
1 Dµ

2 Dµ
3

imin = −4 kmin = −2 imin = −4 kmin = −3 imin = −5 kmin = −4 imin = −7 kmin = −4

imax = 9 kmax = 5 imax = 10 kmax = 6 imax = 9 kmax = 5 imax = 9 kmax = 6

Table 1. A summary of calculations: choosing orientations on each of the diagrams of Figure 1 determines the
maximal and minimal i- and k-gradings of non-zero homogeneous summands of the cochain complexes in each

case. Bigradings in which the cohomology K̃hτ is non-trivial, according to the support lemma, are shaded.

fact that this can be shown by appealing only to the diagrams shown, namely, without complete
calculation of the triply-graded cohomology theory in each case.

Given an oriented involutive diagram D we we denote the number of positive crossings in D
by n+(D) = nA+(D) + nE+(D) where nA+ counts on-axis positive crossings and nE+ counts off-axis

positive crossings. Similarly, n−(D) = nA−(D)+nE−(D) where nA− counts on-axis negative crossings

while nE− counts off-axis negative crossings. We write

kmin(D) = − 1
2n

E
−(D) − nA−(D) and kmax(D) = 1

2n
E
+(D) + nA+(D)

for the minimum and maximum k-gradings, respectively, in which the involutive cochain complex

C̃Khτ (D) is non-zero. These provide lower and upper bounds, respectively, on the possible

k-gradings of non-zero homogeneous summands of K̃hτ (K). This is a direct analogue of the fact
that

imin(D) = n−(D) and imax(D) = n+(D)

provide a priori bounds on the i-grading of K̃h(K). Furthermore we have the following:

Lemma 6.1 (The support lemma). Fix an involutive diagram D with m negative crossings

and n positive crossings for some strongly inversion of a knot K. If K̃h(K) is non-trivial in grading

i = −m then K̃hτ (K) is non-trivial in bigrading (i, k) = (−m, kmin(D)) and, similarly, if K̃h(K)

is non-trivial in grading i = n then K̃hτ (K) in non-trivial in bigrading (i, k) = (n, kmax(D)).

For the specific diagrams in question, the calculation of kmax and kmin is summarized in

Table 1. Note that, since K is alternating, we know that K̃h(K) is non-trivial in i-grading 9 and
in i-grading −4. As a result of these calculations, we conclude that the k-grading is sufficient to
distinguish 3 strong inversions between the knots K and Kµ; it follows that K and Kµ must be
distinct knots, since neither admits more than 2 strong inversions.

2n

2m−3 2m−3

Figure 2. Infinite families.

We remark that, based on the diagrams shown, it is possible
to determine dihedral subgroups D2` and D2`µ in the symmetry
groups of K and Kµ, respectively (where the positive integers `
and `µ may be distinct): each knot admits a periodic symmetry
of order 2. However, based on the tools we have presented here,
neither ` nor `µ is determined.

There are various ways in which the particular choice D can
be altered to produce infinite families of mutant pairs amenable
to being distinguished by our invariant; we give two. Let n be any non-negative integer and let m
be any non-positive integer. Consider the diagram shown in Figure 2; m = n = 0 recovers D. Our
convention is that +1 is the crossing so that the resulting knot is alternating for all choices
m,n. The reader can check that the mutation and the isotopies giving rise to the diagrams in
Figure 1 carry through for arbitrary m and n.

Finally, it is worth noting that the restriction to alternating knots is not an essential one.
The restriction rather allowed us to extract information from the triply-graded invariant without
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having to calculate the invariant in full; easily determine properties of Khovanov cohomology
and knot Floer homology; and to conclude that the examples were hyperbolic without appeal
to additional machinery. However, similar constructions are possible in which the knots are not
alternating, and it seems likely that calculating the full invariant in these settings would yield
similar results.
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