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Self-similar sets

Definition
A compact set E ⊂ Rd is self-similar if there exist similarities
(fi(x) = riOix + ti)m

i=1 with 0 < ri < 1, Oi ∈ Od , ti ∈ Rd such that

E =
m⋃

i=1

fi(E).

If ri ≡ r and Oi ≡ O we say that E is a homogeneous self-similar
set.
In R, Oi(x) = x or −x and in R2, Oi(x) = Rθi (x) (possibly
composed with a reflection).
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Some homogeneous self-similar sets on the line

Figure: The middle-thirds Cantor set (points whose base 3 expansion has
digits 0 and 2)
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Some homogeneous self-similar sets on the line

Figure: The middle-one quarter Cantor set (points whose base 4 expansion
has digits 0 and 3)
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Some homogeneous self-similar sets on the line

Figure: A self-similar set with overlaps
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Some planar self-similar sets

Figure: The Sierpiński triangle
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Some planar self-similar sets

Figure: The Sierpiński carpet
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Some planar self-similar sets

Figure: The one-dimensional Sierpiński gasket
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Some planar self-similar sets

Figure: A non-carpet, no-rotations self-similar set
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Some planar self-similar sets

Figure: A complex Bernoulli convolution (two maps, rotation)
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Some planar self-similar sets

Figure: Another homogeneous self-similar set with rotation
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Some planar self-similar sets

Figure: The von Koch snowflake (not homogeneous)
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Box-counting dimension

Definition
Let E ⊂ Rd be a bounded set. Given a small δ > 0, let

Nδ(E)

be the smallest number of δ-balls needed to cover E .
The (upper and lower) box-counting (Minkowski) dimensions of E
are

dimB(E) = lim sup
δ→0

log Nδ(E)

log(1/δ)
,

dimB(E) = lim inf
δ→0

log Nδ(E)

log(1/δ)

If Nδ(E) ≈ δ−s then dimB(E) = s.
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Hausdorff dimension

The Hausdorff dimension dimH(A) of an arbitrary set A ⊂ Rd is a
non-negative number that measures the size of A in a reasonable way:

1 0 ≤ dimH(A) ≤ d .
2 If A is countable, then dimH(A) = 0. If A has positive Lebesgue

measure, then dimH(A) = d (but the reciprocals are not true).
3 If A is a differentiable (or Lipschitz) variety of dimension k , then

dimH(A) = k .
4 If A ⊂ B, then dimH(A) ≤ dimH(B).
5 dimH(∪iAi) = supi dim(Ai).
6 If f : Rd → Rd is (locally) bi-Lipschitz, then dimH(f (A)) = dim(A).
7 dimH(A) ≤ dimB(A) ≤ dimB(A).
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Hausdorff dimension: definition

Given A ⊂ Rd , let

Hs(A) = inf

{∑
i

r s
i : A ⊂

⋃
i

B(xi , ri)

}

The function s 7→ Hs(A) is decreasing, and is 0 if s > d (it is 0 for
s = d exactly when A has zero Lebesgue measure).

dimH(A) = inf{s : Hs(A) = 0}.
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Dimensions of self-similar sets

Let E = ∪m
i=1fi(E), where the similarities fi have the same

contraction ratio r .
It always holds that dimH(E) = dimB(E) = dimB(E).
If the pieces fi(E) “do not overlap too much” (open set condition,
etc), then

dimH(E) =
log m

log(1/r)
.
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Furstenberg’s conjectures

In the 1960s, Furstenberg stated a number of conjectures on the
Hausdorff dimensions of various fractals sets that give insight into
dynamics/arithmetic (particularly about expansions to an integer base).
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The one-dimensional Sierpiński gasket G

P. Shmerkin (T. Di Tella/CONICET) Geometry of self-similar sets Pacific Dynamics Seminar 10 / 50



Furstenberg’s conjecture on G

Pθ(x) = 〈x , θ〉 (θ ∈ S1).

Conjecture (H. Furstenberg 1960s?)
For every θ with irrational slope, dimH(PθG) = 1.

Theorem (M. Hochman + B. Solomyak 2012)
Furstenberg’s conjecture is true.
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Fursteberg’s slicing conjecture

Conjecture (H. Furstenberg 1969)
Let A,B ⊂ [0,1] ⊂ R be closed and invariant under Tp,Tq respectively,
where p 6∼ q (meaning log p/ log q /∈ Q). Then

dimH(A ∩ g(B)) ≤ max(dimH(A) + dimH(B)− 1,0)

for all non-constant affine maps g.

Remark
This conjecture express in geometric terms the heuristic principle that
“expansions to bases p and q have no common structure”.

Theorem (P.S./ M. Wu 2019)
Furstenberg’s slicing conjecture holds.
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Furstenberg’s slicing conjecture in pictures
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Linear slices of self-affine sets
Theorem (P.S. / Meng Wu 2019)
Let A,B be closed and p,q-Cantor sets with p 6∼ q. Then

dimH(A× B ∩ `) ≤ max(dimH(A) + dimH(B)− 1,0)

for all non vertical/horizontal lines.

The two methods are completely different. Meng Wu uses ergodic
theory and CP-chains. My method relies on additive
combinatorics.
The set A× B is self-affine; it is made up of affine images of itself.
A× B is invariant under Tp,q(x , y) = (px mod 1,qx mod 1) on the
torus. Very recently, A. Algom and M. Wu extended this result to
general closed Tp,q-invariant sets.
The theorem also holds for real analytic curves (other than
horizontal or vertical lines).
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Interpolating between the two conjectures

There are two main differences between the two conjectures:
1 One refers to projections, the other to slices.
2 One is about self-similar sets (one basis, T3), the other about

self-affine sets (two bases, Tp,q).

We can interpolate by asking about projections of Tp,q-invariant
sets or about slices of Tp-invariant sets.
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Furstenberg’s sumset conjecture

Conjecture (H. Furstenberg 1960s)
If A,B are closed and Tp,Tq-invariant then

dimH(Pθ(A× B)) = min(dimH(A) + dimH(B),1).

for all θ /∈ {0, π/2}.

Theorem (M. Hochman and P.S. 2012)
The conjecture holds.

Remark
It can be shown that the slicing conjecture is formally stronger than the
sumset conjecture. In particular, the two proofs to the slicing
conjecture give two new proofs for the projection conjecture.
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Slices of Tn-invariant sets

Theorem (P.S. 2019)

Let E ⊂ [0,1]2 be closed and Tp-invariant (for example, the one dim.
Sierpiński gasket).

Then for every line ` with irrational slope,

dimH(E ∩ `) ≤ dimB(E ∩ `) ≤ max(dimH(E)− 1,0).

In fact, if θ has irrational slope, then for every s > max(dimH(E)− 1,0),
the intersection E ∩ ` can be covered by Cθ,sr−s balls of radius r for all
lines ` in direction θ.

Note that Cθ,s does not depend on the line, only on the angle.
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Slices of Tn-invariant sets

Figure: Each line with irrational slope intersects a sub-exponential number of
small triangles
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Slices of Tn-invariant sets

Remarks
For (infinitely many) rational directions this is not true: in a
direction for which two pieces in the construction have an exact
overlap, the slice has larger dimension.
Meng Wu’s approach does not work in this setting. The proof uses
additive combinatorics and multifractal analysis, no ergodic theory.

Corollary
Let G be the one-dim Sierpiński gasket (or any Tp-invariant set of
dimension ≤ 1). Then for all irrational θ,

dimH(PθF ) = dimH(F ) for all F ⊂ G.
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Slices of homogeneous self-similar sets

Theorem
Let E ⊂ R2 be a homogeneous self-similar set with OSC.

1 (P.S./M. Wu 2019) Suppose the rotation is irrational. Then

dimH(E ∩ `) ≤ dimB(E ∩ `) ≤ max(dimH(E)− 1,0)

for every line `.
2 (P.S. 2019) If the rotation is rational, there exists a set Θ of

directions of zero Hausdorff (and packing) dimension such that

dimH(E ∩ `) ≤ dimB(E ∩ `) ≤ max(dimH(E)− 1,0)

for all lines ` with direction not in Θ.
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Intersections with curves

Corollary (P.S. 2020?)

Let E ⊂ R2 be a homogeneous self-similar set with OSC and let σ be a
C1 curve.

1 If E has irrational rotation, then

dimH(E ∩ σ) ≤ dimB(E ∩ σ) ≤ max(dimH(E)− 1,0).

2 If E has rational rotation, then the same holds provided the set of
times t such that σ′(t) has rational slope has zero Hausdorff
dimension. In particular, it holds for any non-linear real-analytic
curve.

3 If the curve is only differentiable, the same still holds for Hausdorff
dimension (and even packing dimension).

4 On the other hand, this is wildly false for Lipschitz curves (any set
of box dimension < 1 can be covered by a Lipschitz curve).
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Slices of the Sierpiński carpet
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Tube-null sets

Definition
A tube (in the plane) is an ε-neighborhood of a line. The width
w(T ) of the tube T is ε.
A set E ⊂ R2 is tube-null if, for any ε > 0, it can be covered by a
countable union of tubes {Ti} with

∑
i w(Ti) < ε.
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Properties of tube-null sets

Any tube-null set is Lebesgue-null. (The converse does not hold.)
A subset of a tube-null set is tube-null.
A countable union of tube-null sets is tube-null.
If PθE is Lebesgue null (in R) for some θ, then E is tube-null.
There are tube-null sets of Hausdorff dimension 2: take A× R,
where A has zero Lebesgue measure and Hausdorff dimension 1.
(Carbery-Soria-Vargas) Sets of σ-finite 1-dim. Hausdorff measure
are tube-null (idea: decompose them as a union of a purely
unrectifiable and a rectifiable set, and use Besicovitch’s projection
theorem for the unrectifiable part).
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Dimension of sets which are not tube-null

Question (Carbery)
What is inf{dimH(K ) : K is not tube null }? For what dimensions are
there non-tube-null Ahlfors-regular sets?

Theorem (P. S.-V. Suomala 2011)
There are (random) sets of any dimension ≥ 1 which are not tube null,
and they can be taken to be Ahlfors-regular if the dimension is > 1.

P. Shmerkin (T. Di Tella/CONICET) Geometry of self-similar sets Pacific Dynamics Seminar 25 / 50



Dimension of sets which are not tube-null

Question (Carbery)
What is inf{dimH(K ) : K is not tube null }? For what dimensions are
there non-tube-null Ahlfors-regular sets?

Theorem (P. S.-V. Suomala 2011)
There are (random) sets of any dimension ≥ 1 which are not tube null,
and they can be taken to be Ahlfors-regular if the dimension is > 1.

P. Shmerkin (T. Di Tella/CONICET) Geometry of self-similar sets Pacific Dynamics Seminar 25 / 50



The localization problem
Definition
Given f ∈ L2(Rd ), let

SRf (x) =

∫
|ξ|<R

f̂ (ξ)e2πix ·ξdξ

be the localization of f to frequencies of modulus ≤ R.

Open problem

Is it true that for any f ∈ L2,

f (x) = lim
R→∞

SRf (x) for almost every x ?.

Remark
Famous result of Carleson in dimension 1. Open in higher dimensions.
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Localization and tube-null sets

Theorem (Carbery-Soria 1988)

Let Ω be a compact domain (for example unit disk). If f ∈ L2(R2) and
supp(f ) ∩ Ω = ∅, then

SRf (x)→ 0 for almost every x ∈ Ω.

Theorem (Carbery, Soria and Vargas 2007)

If E ⊂ Ω is tube-null, then there is f ∈ L2(R2) with supp(f )∩Ω = ∅ such
that

SRf (x) 6→ 0 for all x ∈ E .
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Which sets are tube-null?

There is no (non-trivial) connection between Hausdorff dimension
and tube-nullity: there are tube-null sets of dimension 2 and sets
of dimension 1 which are not tube-null. Still, intuitively, sets of
large dimension should have more difficulty being tube-null.
If we can decompose E into countably many pieces Eθ such that
PθEθ is Lebesgue-null, then E is tube-null.
There were very few non-trivial examples of tube-null sets of large
dimension. In particular, it seems reasonable to ask which
self-similar sets are tube-null.

Theorem (V. Harangi 2011)
The von Koch snowflake is tube-null.
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The Sierpiński carpet is tube-null

Theorem (A. Pyörälä, P.S., V. Suomala and M. Wu 2020)
For any closed Tn-invariant set E, other than the full torus, there exists
a finite set of rational directions θj and a decomposition E = ∪jEj such
that

dimH(Pθj Ej) < 1.

Corollary
Any non-trivial closed Tn-invariant set is tube null.

Corollary
The Sierpiński carpet is tube null.
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Some remarks on the result for the Sierpiński carpet

Since the projection of the Sierpiński carpet in any direction is an
interval, we need to decompose it into at least 2 pieces. By Baire’s
Theorem and self-similarity, the pieces can’t be all closed (and
none can be open).
Our proof is indirect; we don’t construct the pieces explicitly. (We
can give an explicit set of directions that suffices.)
The proof uses ergodic theory, in particular Bowen’s Lemma
relating topological entropy to measure-theoretic entropy.
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A key proposition

Proposition (A.Pyörälä, P.S. , Ville Suomala, Meng Wu)
Let E be closed, Tn-invariant, and not the full torus. Then there are
c > 0 and a finite set Θ of rational directions, such that for every
Tn-invariant measure µ supported on E there is θ ∈ Θ such that

dim(Pθµ) ≤ 1− c.

Corollary
Let

Mθ = {µ ∈ P(E) : Tnµ = µ, dim Pθµ ≤ 1− c}.

Then there exists a finite set of rational directions Θ such that

M⊂
⋃
θ∈Θ

Mθ.
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The decomposition of E

Definition
Given x ∈ E , let V (x) be the set of measures µ ∈M such that x is
generic for µ along some subsequence or, in other words, the
accumulation points of

1
n

n−1∑
j=0

δT j
nx .

Definition

Eθ = {x ∈ E : V (x) ∩Mθ 6= ∅}.

Corollary (of key proposition)

E ⊂
⋃
θ∈Θ

Eθ.
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Projections of Tn-invariant measures

Question (A. Algom)

Let µ be Tn-invariant and ergodic on [0,1]2. When does there exist
θ /∈ {0, π/2} such that dim(Pθµ) < dim(µ)?

Corollary (A. Pyörälä, P.S., V.Suomala and M. Wu 2020)

Let µ be Tn-invariant and ergodic on [0,1]2 and suppose dimµ = 1.
Then the following are equivalent:

1 µ = ν × λ or µ = λ× ν, where λ is Lebesgue measure on [0,1]
and ν is a Tn-invariant measure of zero entropy.

2 dim(Pθµ) = dimµ for all θ /∈ {0, π/2}.
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Proof for the Sierpiński carpet: projected IFS

The Sierpiński carpet K is the attractor of the IFS

F =

{
f(i,j) =

(
x + i

3
,
y + j

3

)
: (i , j) ∈ Λ

}
,

Λ = {(0,0), (0,1), (0,2), (1,0), (1,2), (2,0), (2,1), (2,2)}.

Given v ∈ R2 \ {0}, let Pv (x) = 〈v , x〉; this is projection in direction
v (scaled by ‖v‖).
Then Pv K is the attractor of{

Fv = 1
3(x + Pv (i , j)) : (i , j) ∈ Λ

}
.

In fact, Pv K is an interval for all v so this is not too interesting.
The projected IFS plays a crucial role but we have to look at
projections of measures.
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Non-absolutely continuous projections
LetM be the collection of T3-invariant measures supported on K .

Lemma
There is R0 such that for every µ ∈M there is v ∈ Z2 ∩ B(0,R0) such
that Pvµ is not absolutely continuous.

Proof.
Since µ is not Lebesgue, it has a non-zero Fourier coefficient,
µ̂(p,q) 6= 0, (p,q) 6= (0,0).
Moreover, since Lebesgue is not in the weak closure of measures
supported on K , we can find such (p,q) in a fixed ball of radius R0.
By T3 invariance, this implies that if v = (p,q), then

P̂vµ(3n) = µ̂(3np,3nq) = µ̂(p,q) 6= 0.

By the Riemann-Lebesgue Lemma, Pvµ 6� L.
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Entropy dimension

Logarithms are to base 2

Definition (Entropy and entropy dimension)
If µ is a measure and A is a measurable partition, we define the
Shannon entropy

H(µ,A) =
∑
A∈A

µ(A) log(1/µ(A)).

If µ is a measure on Rd , we define the entropy dimension as

dim(µ) = lim
n→∞

1
n

H(µ,Dn(Rd )) =: lim
n→∞

1
n

Hn(µ),

where Dn(Rd ) is the partition into dyadic 2−n-cubes.
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Basic properties of entropy dimension

On Rd , the entropy dimension ranges from 0 to d . Absolutely
continuous measures have full entropy dimension.
Hausdorff dimension ≤ entropy dimension. This means that there
are sets of positive µ-measure and Hausdorff dimension ≤ dim(µ).
If µ is Tn-invariant, then dim(µ) = h(µ,Tn)/ log n.
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Entropy of projected measures
Lemma
Let v = (p,q) ∈ Z2 \ {(0,0)}, and let µ ∈M. Then

either Pvµ� L or dim Pvµ < 1.

Moroever, µ 7→ dim Pvµ is upper semicontinuous.

Proof.
Show that

Hn+m(Pvµ) ≤ Hn(Pvµ) + Hm(Pvµ) + Cv .

This holds because Fv satisfies the weak separation condition.
This implies that if dim Pvµ = 1, then Hn(Pvµ) ≥ n − Cv .
Any measure ν on R with Hn(ν) ≥ n − C is absolutely continuous.
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The weak separation condition

Definition
Let (fi)m

i=1 be an IFS. For each word i = (i1 . . . ik ) ∈ {1, . . . ,m}k ,
consider the composition

fi = fi1 ◦ · · · ◦ fik .

The weak separation condition holds if any map of the form f−1
j fi, with

i,j words of the same length, is either equal to the identity or
uniformly separated from the identity.

Remark
The weak separation condition allows for exact overlaps (that is, for
coincidences fi = fj for different words i,j), but it says that other than
exact overlaps the pieces in the construction of the IFS are well
separated.
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The key proposition
Putting everything together:

Proposition (A.Pyörälä, P.S. , Ville Suomala, Meng Wu)
Let

Mθ = {µ ∈M : dim Pθµ ≤ 1− δ0}.

Then there exists a finite set of rational directions Θ such that

M⊂
⋃
θ∈Θ

Mθ.

Remark
It follows from a result of T. Jordan and A. Rapaport that if µ is
Tn-invariant,

dim(Pθµ) = min(dim(µ),1)

for all irrational directions θ.
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The decomposition of K

Definition
Given x ∈ K , let V (x) be the set of measures µ ∈M such that x is
generic for µ along some subsequence or, in other words, the
accumulation points of

1
n

n−1∑
j=0

δT j
3x .

Definition

Kθ = {x ∈ K : V (x) ∩Mθ 6= ∅}.

Corollary (of key proposition)

K ⊂
⋃
θ∈Θ

Kθ.
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The second key proposition

Corollary

K ⊂
⋃
θ∈Θ

Kθ.

To conclude the proof that the Sierpiński carpet is tube-null, it is
enough to show:

Proposition

dimH(PθKθ) < 1.
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Identifying exact overlaps
Fix θ = (p,q) ∈ Θ and µ ∈Mθ. Recall that this means that
dim Pθµ ≤ 1− δ0.
We replace the projected IFS Fv by a sufficiently high iteration
Fk

v = {Pv fi : i ∈ Λk}.
Many of the maps Pv fi coincide. We consider the factor map
π = πv that identifies all words i ∈ Λk according to the
equivalence relation Pv fi = Pv fj.

Lemma
If k is large enough and µ ∈Mθ,

h(πµ, σ) ≤ (1− δ0/2) log 3.

Proof.
By the WSC, if k is large then, after identifying exact overlaps, the map
πv is “almost injective”.
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π = πv that identifies all words i ∈ Λk according to the
equivalence relation Pv fi = Pv fj.

Lemma
If k is large enough and µ ∈Mθ,

h(πµ, σ) ≤ (1− δ0/2) log 3.

Proof.
By the WSC, if k is large then, after identifying exact overlaps, the map
πv is “almost injective”.
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Conclusion of the proof

Kθ =points that equidistribute (along some subsequence) for
some µ ∈Mθ.
If π is “identifying the overlaps of high iteration” then
h(πµ, σ) ≤ (1− δ0/2) log 3 for µ ∈Mθ.
If x equidistributes for µ, then πx equidistributes for πµ.
Therefore if x ∈ Kθ, then πx equidistributes for some measure of
entropy ≤ (1− δ0/2) log 3.
The proof is now concluded from Bowen’s Lemma.

Lemma (Bowen)
If Et is the set of points in ΓN that equidistribute (under some
subsequence) for some measure of entropy ≤ t , then

htop(Et , σ) ≤ t .
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Other results: self-similar sets with no rotations

Question
We have seen that carpet-type self-similar sets are tube-null. What
about other self-similar sets?

Theorem (A. Pyörälä, P.S., V. Suomala and M. Wu)

Let {rx + ti}4i=1 be a homogeneous IFS with 4 maps and no rotations,
and let K be the attractor.

If r < 2−3/2 ≈ 0.353, and Θ = {ti − tj : i 6= j}, there are sets (Kθ)θ∈Θ

covering K such that dim(PθKθ) < 1.

In particular, K is tube-null.
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A tube-null, non-carpet self-similar set

Figure: A self-similar set of dimension ≈ 1.3205. It is tube-null, even though it
can be checked that all its projections are intervals
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Remarks on self-similar sets without rotations

Theorem
If K is a homogeneous self-similar sets with no rotations, 4 maps and
contraction ratio < 2−3/2 ≈ 0.353, then K is tube null.

If K satisfies OSC, the condition is equivalent to dimH(K ) < 4/3.
If r < 1/3 (equivalently dimH(K ) < 1.2618 . . .), the result is almost
trivial: for any direction in Θ, the projection of all of K has
dimH < 1.
On the other hand, if r > 1/3, as we have seen this is not true: the
projections of K in all directions may be intervals. We use a
similar argument to the carpet case (but easier).
Similar results hold for any number of maps and
non-homogeneous IFS’s. But it is key that there are no rotations.
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Other results: self-similar sets with dense rotations

Theorem (A. Pyörälä, P.S., V. Suomala and M. Wu)
Let {fi(x) = λiRθi x + ti} be a self-similar IFS, where Rθ is rotation by
angle θ, and let K be the attractor.

If dimH(K ) ≥ 1 and there is θ with θ/π /∈ Q (“dense rotations”), then for
every δ > 0 there is c = cδ > 0 such that for any covering (Tj)j of K by
tubes, ∑

j

w(Tj)
1−δ ≥ c > 0.

Remark
If we define a “tube Hausdorff dimension” using covering by tubes and
w(T ) instead of the diameter, the theorem says that self-similar sets
with dense rotation of dimension ≥ 1 have tube Hausdorff dimension
equal to 1 (maximum possible value).
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Remarks on self-similar sets with dense rotations

Theorem
Self-similar sets in the plane with dense rotations and dimension ≥ 1
have “tube Hausdorff dimension” 1.

We believe that such self-similar sets are not tube-null, but this
seems to be very difficult to prove. What we prove is just slightly
weaker.
Our proof for Sierpiński carpets shows that they have tube
dimension < 1, so there is definitely a contrast.
By a rather standard reduction, it is enough to consider
homogeneous self-similar sets with strong separation. Then the
result is a consequence of the slicing results from the first part of
the talk.
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Thank you!!
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