Math 342 Problem set 4 (due 2/2/09)

The natural numbers

- 1. Show, for all $a, b, c \in \mathbb{Z}$:
 - (a) (cancellation from both sides) (ac, bc) = c(a, b).
 - (b) (cancellation from one side) If (a,c) = 1 then (a,bc) = (a,b)*Hint*: can either do these directly from the definition or using Prop. 2.5.7 from the notes.
- 2. $(\sqrt{6} \text{ and friends})$
 - (a) Show that $\sqrt{6}$ is not rational.
 - (b) Show that $\sqrt{3}$ is not of the form $a + b\sqrt{6}$ for any $a, b \in \mathbb{Q}$.
 - *Hint*: If $\sqrt{3} = a + b\sqrt{6}$ we square both sides and use part (a) and that $\sqrt{2} \notin \mathbb{Q}$.
 - (b) For any $a, b \in \mathbb{Q}$ show that $a\sqrt{2} + b\sqrt{3}$ is irrational unless a = b = 0.

Factorization in the integers and the rationals

- 3. Let $r \in \mathbb{Q} \setminus \{0\}$ be a non-zero rational number.
 - (a) Show that *r* can be written as a product $r = \varepsilon \prod_p p^{e_p}$ where $\varepsilon \in \{\pm 1\}$ is a sign, all $e_p \in \mathbb{Z}$, and all but finitely many of the e_p are zero.

Hint: Write $r = \varepsilon a/b$ with $\varepsilon \in \{\pm 1\}$ and $a, b \in \mathbb{Z}_{\geq 1}$.

(b) Prove that this representation is unique, in other words that if we also have r = ε' Π_p p^{f_p} for ε' ∈ {±1} and f_p ∈ Z almost all of which are zero, then ε' = ε and f_p = e_p for all p. *Hint*: On each side separate out the prime factors with positive and negative exponents.

Ideals

DEFINITION. Call a non-empty subset $I \subset Z$ an *ideal* if it is closed under addition (if $a, b \in I$ then $a + b \in I$) and under multiplication by elements of \mathbb{Z} (if $a \in I$ and $b \in \mathbb{Z}$ then $ab \in I$).

- 7. For $a \in \mathbb{Z}$ let $(a) = \{ca \mid c \in \mathbb{Z}\}$ be the set of multiples of *a*. Show that (a) is an ideal. Such ideals are called *principal*.
- 8. Let $I \subset \mathbb{Z}$ be an ideal. Show that *I* is principal. *Hint*: Use the argument from the second proof of Bezout's Theorem.
- 9. For $a, b \in \mathbb{Z}$ let (a, b) denote the set $\{xa + yb \mid x, y \in \mathbb{Z}\}$. Show that this set is an ideal. By problem 8 we have (a, b) = (d) for some $d \in \mathbb{Z}$. Show that *d* is the GCD of *a* and *b*. This justifies using (a, b) to denote both the gcd of the two numbers and the ideal generated by the two numbers.
- 10. Let $I, J \subset \mathbb{Z}$ be ideals. Show that $I \cap J$ is an ideal, that is that the intersection is non-empty, closed under addition, and closed under multiplication by elements of \mathbb{Z} .
- 11. For $a, b \in \mathbb{Z}$ show that the set of common multiples of *a* and *b* is precisely $(a) \cap (b)$. Use problem 8 to show that every common multiple is a divisible by the least common multiple.

Congruences

12. Using the fact that $10 \equiv -1(11)$, find a simple criterion for deciding whether an integer *n* is divisible by 11. Use your criterion to decide if 76443 and 93874 are divisible by 11.

Optional problems: The *p***-adic distance**

For an rational number r and a prime p let $v_p(r)$ denote the exponent e_p in the unique factorization from problem 3. Also set $v_p(0) = +\infty$ (∞ is a formal symbol here).

- A. For $r, s \in \mathbb{Q}$ show that $v_p(rs) = v_p(r) + v_p(s)$, $v_p(r+s) \ge \min \{v_p(r), v_p(s)\}$ (when r, s, or r+s is zero you need to impose rules for arithmetic and comparison with ∞ so the claim continues to work).
- For $a \neq b \in \mathbb{Q}$ set $|a-b|_p = p^{-\nu_p(a-b)}$ and call it the *p*-adic *distance* between *a*, *b*. For a = b we set $|a-b|_p = 0$ (in other words, we formally set $p^{-\infty} = 0$). It measure how well a-b is divisible by *p*.
- B For $a, b, c \in \mathbb{Q}$ show the triangle inequality $|a c|_p \le |a b|_p + |b c|_p$. Hint: (a - c) = (a - b) + (b - c).
- C. Show that the sequence $\{p^n\}_{n=1}^{\infty}$ converges to zero in the *p*-adic distance (that is, $|p^n 0|_p \to 0$ as $n \to \infty$).

REMARK. The sequence $\{p^{-n}\}_{n=1}^{\infty}$ cannot converge in this notion of distance: if it converged to some *A* then, after some point, we'll have $|p^{-n} - A|_p \leq 1$. By the triangle inequality this will mean $|p^{-n}|_p \leq |A|_p + 1$. Since $|p^{-n}|_p$ is not bounded, there is no limit. The notion of *p*-adic distance is central to modern number theory.