Math 342 Problem set 8 (due 11/3/09)

Prime rings

- 1. Let *R* be a ring. We define a map $f \colon \mathbb{N} \to R$ inductively by $f(0) = 0_R$ and $f(n+1) = f(n) + 1_R$. (a) Show that $f(1) = 1_R$. Show that f(n+m) = f(n) + f(m) for all $n, m \in \mathbb{N}$.
 - *Hint:* Induction on *m*.
 - (b) Show that f respects multiplication, that is for all $n, m \in \mathbb{N}$, $f(nm) = f(n) \cdot f(m)$. *Hint*: Induction again. The case m = 0 uses a result from class.
 - OPTIONAL Extend f to a function $g: \mathbb{Z} \to R$ by setting g(n) = f(n) if $n \in \mathbb{Z}_{\geq 0}$, and g(n) = -f(-n) if $n \in \mathbb{Z}_{\leq 0}$. Show that g is a ring homomorphism. *Hint:* Divide into cases.
- 2. Let *A*, *B* be rings and *g*: $A \rightarrow B$ be a homomorphism. Show that the image $g(A) = \{b \in B \mid \exists a \in A : g(a) = b\}$ is a subring of *B*.
- 3. Continuing problem 1, let g be the ring homomorphism you constructed, let $S = g(\mathbb{Z})$ be the image of g, and let $I = g^{-1}(0_R)$ be the set of $n \in \mathbb{Z}$ such that $g(n) = 0_R$.
 - (a) Show that *I* is an ideal in \mathbb{Z} . By a previous problem set there is $m \in \mathbb{N}$ such that I = (m).
 - (b) If m = 0 show that g is injective, hence that R contains a subring isomorphic to \mathbb{Z} . *Hint*: Use the criterion for injectivity from problem set 7.
 - (c) Show that m = 1 is impossible, as long as $0_R \neq 1_R$. *Hint*: What is g(1) if m = 1? Compare with problem 1(a).
 - (d) If $m \ge 2$, define $h: \mathbb{Z}/m\mathbb{Z} \to R$ by $h([a]_m) = g(a)$. Show that *h* is a well-defined function (that is, if $[a]_m = [a']_m$ then g(a) = g(a')).
 - (e) Show that *h* is a ring homomorphism.
 - (f) Show that *h* is an isomorphism.

Hint: To check injectivity, it is enough to understand $h([0]_m)$; to check surjectivity, given $s \in S$ need to find $[a]_m \in \mathbb{Z}/m\mathbb{Z}$ such that $h([a]_m) = s$.

We conclude that every ring contains either a subring isomorphic to \mathbb{Z} or a subring isomorphic to $\mathbb{Z}/m\mathbb{Z}$ for some $m \ge 2$.

REMARK. You can also check that $S = g(\mathbb{Z})$ is the smallest subring of R – the intersection of all subrings of R.

Prime fields and vector spaces

Now let *F* be a field, and let $g: \mathbb{Z} \to F$ be the map constructed in problem 1. Let *m* be the number defined in problem 3.

4. Assume by contradiction that *m* is positive and composite, that is m = ab with 1 < a, b < m. Apply the function *g* and obtain a contradiction to the fact that *F* is a field. Conclude that either m = 0 or *m* is prime.

DEFINITION. *m* is called the *characteristic* of the field *F* and denoted char(*F*). Problems 1-4 now show that the characteristic of a field is either zero or a prime number, and that a field of prime characteristic *p* contains an isomorphic copy of \mathbb{F}_p .

- 5. Let *F* be a finite field.
 - (a) Show that char(F) > 0. Conclude that $\mathbb{F}_p \subset F$ for some p. *Hint*: You need to rule out char(F) = 0; for this use problem 3(b).
 - (b) Show that F has the structure of a vector space over \mathbb{F}_p . *Hint:* All the vector space axioms follow directly from the field axioms.
 - (c) Show that $\dim_{\mathbb{F}_p} F < \infty$ (can F contain an infinite linearly independent set?). It follows that, as an \mathbb{F}_p -vector space, F is isomorphic to \mathbb{F}_p^n for some $n \ge 1$.
 - (d) Show that the number of elements of a finite field is always a prime power. *Hint:* How many elements are there in \mathbb{F}_{p}^{n} ?

REMARK. It is also true that for every $q = p^n$ there exists a field \mathbb{F}_q of size q, unique up to isomorphism.

The Hamming Code (variant)

6. (§13E.E6) Let $H \in M_{3\times 7}(\mathbb{F}_2)$ be the matrix whose columns are all non-zero vectors in \mathbb{F}_2^3 , that is

(a) Let $a, b, c, d \in \mathbb{F}_2$ be a 4-bit "message" we want to transmit. Show that there exist unique $x, y, z \in \mathbb{F}_2$ so that $H \cdot (x, y, z, a, b, c, d)^T = 0$. We will trasmit the redundant 7-bit vector instead.

Hint: Need to show both that x, y, z exist and that they are unique.

- (b) For each $1 \le i \le 7$, let \underline{e}^i be the standard basis vector of \mathbb{F}_2^7 with 1 at the *i*th co-ordinate. Calculate the seven vectors He^{i} .
- (c) Let $\underline{v}, \underline{v}' \in \mathbb{F}_2^7$ be at Hamming distance 1. Show that there exists *i* so that $\underline{v}' = \underline{v} + \underline{e}^i$. (d) Now let's say we transmit the 7-bit vector $\underline{v} = (x, y, z, a, b, c, d)^T$ from part (a) through a channel that can change at most one bit in every seven. Denote by v' the 7 received bits, and show that if $\underline{v}' \neq \underline{v}$ then $H\underline{v}' \neq \underline{0}$. Conclude that the recipient can detect if a 1-bit error occured.

Hint: Use the fact that $H\underline{v} = \underline{0}$ and your answers to parts (c) and (b).

(e) In fact, if at most one bit error can occur then the recipient can *correct* the error. Using the fact that the vectors $H\underline{e}^{i}$ are all different (see your answer to part (b)), show that knowing only \underline{v}' and that at most one error occured, the recipient can calculate the difference $\underline{e} =$ v' - v and hence the original vector v.

Hint: What are the possibilities for <u>e</u>? For <u>He</u>? how do they match up? Don't forget that it's possible that $\underline{v}' = \underline{v}$.