PROBLEMS IN ALGEBRAIC NUMBER THEORY

LIOR SILBERMAN

PROBLEM SET 1

Dedekind domains

1. Show that a Dedekind domain with finitely many maximal ideals is a PID.

Quadratic extensions

For a field F and $a \in F$ we define $F(\sqrt{a})$ to be the algebra $F[x]/(x^2-a)$. Note that this need not be a field.

- 2. Let *d* be a square-free integer. Find $\mathbb{Q}_p(\sqrt{d})$ for all *p*. Which cases are ramified? split? Also, find $\mathbb{R}(\sqrt{d})$.
- 3. Let $K = \mathbb{Q}(\sqrt{d})$. Find the ring of integers \mathcal{O}_K .
- 4. Find which rational primes p ramify, split, or are inert in the extension K/\mathbb{Q} .

Norms in extensions

- 5. Let \mathscr{O}_K be a domain integrally closed in its field of fractions K, L/K a finite Galois extension of fields, $\mathscr{O}_L \subset L$ the integral closure of \mathscr{O}_K . For an ideal \mathfrak{a} of \mathscr{O}_L set $N_K^L(\mathfrak{a}) = (\prod_{\sigma \in \text{Gal}(L/K)} \sigma(\mathfrak{a})) \cap K$.
 - (a) Show that $N_K^L(\mathfrak{a})$ is an ideal of \mathscr{O}_K and that $N_K^L(\mathfrak{a}) \cdot \mathscr{O}_L = \prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma(\mathfrak{a})$.
 - (b) Extend this definition to separable extensions in general.
 - (c) Show that $[\mathscr{O}_L;\mathfrak{a}] = [\mathscr{O}_K: N_K^L(\mathfrak{a})].$

Local fields

Let *F* be a non-archimedean local field with maximal compact subring \mathcal{O}_F , maximal ideal $\mathfrak{p} \triangleleft \mathcal{O}_F$ and uniformizing element $\overline{\omega} \in \mathfrak{p} \setminus \mathfrak{p}^2$. Let $k = \mathcal{O}_F / \mathfrak{p}$ be the residue field, q = #k its order and *p* its characteristic. Normalize the absolute value on *F* so that $|\overline{\omega}| = q^{-1}$.

- 6. Find the domain of convergence of the series $\exp(x) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} \frac{x^k}{k!}, -\log(1-x) \stackrel{\text{def}}{=} \sum_{k=1}^{\infty} \frac{x^k}{k}$. Show that $\log \exp(x) = x$ and $\exp \log(1-x) = 1-x$ in appropriate discs.
- 7. Let V be a finite-dimensional topological vector space over F. Show that V is locally compact. Conclude that the topology on V is unique.
- 8. Let \overline{F} be an algebraic closure of F. Show that there is a unique extension of the absolute value to \overline{F} . Show that \overline{F} is not complete with respect to this absolute value. Show that the metric completion of \overline{F} is algebraically closed. The completion of the algebraic closure of \mathbb{Q}_p is denoted \mathbb{C}_p .

Let $\bar{\mathfrak{p}} \lhd \bar{\mathscr{O}} \subset \bar{F}$ be defined using that absolute value, and let $\bar{k} = \bar{\mathscr{O}}/\bar{\mathfrak{p}}$.

9. Show that \bar{k} is an algebraic closure of k.