Math 422/501: Problem set 8 (due 4/11/09)

Monomorphisms of fields

- 1. (From class)
 - (a) Let L/K be a finite extension and $\sigma \in \text{Hom}_K(L,L)$. Show that σ is an automorphism.
 - (b) Let L/K be an algebraic extension and $\sigma \in \text{Hom}_K(L,L)$. Show that σ is an automorphism.
 - (c) Give an example showing there exist extensions with endomorphisms which are not automorphisms.
- 2. Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be a homomorphism of rings. Show that φ is the identity map.
- 3. (The Frobenius map) Let *K* be a field of characteristic p > 0
 - (a) Show that the map $x \mapsto x^p$ defines a monomorphism $K \to K$.
 - (b) Conclude by induction that the same holds for the map $x \mapsto x^{p^r}$ for any $r \ge 1$.
 - (c) When *K* is finite show that the Frobenius map is an automorphism.
 - OPT When $K = \overline{\mathbb{F}}_p$ show that the Frobenius map is again an automorphism, and obtain a group homomorphism $\mathbb{Z} \mapsto \text{Gal}(\overline{\mathbb{F}}_p : \mathbb{F}_p)$.

FACT The image of this homomorphism is dense.

- 4. (The Galois correspondence for $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$).
 - (a) Find all \mathbb{Q} -automorphisms of *K* and give their group structure.
 - (b) Find all subfields of *K*.
 - (c) Show that the map $H \mapsto Fix(H)$ gives a bijection between subgroups of the automorphism group and subfields of *K*.

Finite fields

- 5. (Multiplicative groups)
 - (a) Let G be a finite p-group such that for every d, $|\{g \in G \mid g^d = e\}| \le d$. Show that G is cyclic.
 - (b) Let G be a finite group such that for every d, $|\{g \in G \mid g^d = e\}| \le d$. Show that G is cyclic.
 - (c) Let *F* be a field, $G \subset F^{\times}$ a finite group. Show that *G* is cyclic.
- 6. (Uniqueness of finite fields) Fix a prime p and let $q = p^r$ for some $r \ge 1$.
 - (a) Show that the polynomial $x^q x \in \mathbb{F}_p[x]$ is separable.
 - (b) Let *F* be a finite field with *q* elements. Show that *F* is a splitting field for $x^q x$ over \mathbb{F}_p .
 - (c) Conclude that for each q there is at most one isomorphism class of fields of order q. If such a field exists it is denoted \mathbb{F}_q .

- 7. (Existence of finite fields) Fix a prime *p* and let $q = p^r$ for some $r \ge 1$.
 - (a) Let F/\mathbb{F}_p be a splitting field for $x^q x$, and let $\sigma \colon F \to F$ be the map $\sigma(x) = x^q$. Show that the fixed field of σ is also a splitting field.
 - (b) Conclude that the field F has order q.
- 8. Let *F* be a finite field, K/F a finite extension.
 - (a) Show that the extension K/F is normal and separable. *Hint*: 7(a).
 - (b) Show that there exists $\alpha \in K$ so that $K = F(\alpha)$. *Hint*: Consider the group K^{\times} .

Optional – Finite fields

- A. (Galois correspondence for finite fields) Fix a prime *p*.
 - (a) Assume that \mathbb{F}_{p^r} embeds in \mathbb{F}_{p^k} . Show that r|k.
 - (b) Let r|k. Show that \mathbb{F}_{p^k} has a unique subfield isomorphic to \mathbb{F}_{p^r} , consisting of the fixed points of the map $x \mapsto x^{p^r}$.
 - (c) Show that $\operatorname{Gal}(\mathbb{F}_{p^k}:\mathbb{F}_{p^r})$ is cyclic and generated by the Frobenius map $x \mapsto x^{p^r}$.
 - (d) Obtain the Galois correspondence for extensions of finite fields.