Math 422/501: Problem set 10 (due 18/11/09)

The trace

When L/K is a finite Galois extension and $\alpha \in L$ we used in class the combination ("trace") $\operatorname{Tr}_{K}^{L}(\alpha) = \sum_{\sigma \in \operatorname{Gal}(L/K)} \sigma \alpha$, which we needed to be non-zero. We will study this construction when L/K is a finite separable extension, fixed for the purpose of the problems 1-3.

- 1. Let N/K be a normal extension containing *L*.
 - (a) For $\alpha \in L$ we provisionally set $\operatorname{Tr}_{K}^{L}(\alpha) = \sum_{\mu \colon L \to N} \mu \alpha$ ("trace of α "), $N_{K}^{L}(\alpha) = \prod_{\mu \colon L \to N} \mu \alpha$ ("norm of α "). Show that the definition is independent of the choice of N.
 - (b) Making a judicious choice of N show that the trace and norm defined in part (a) are elements of K.
 - Observe that when L/K is a Galois extension the definition from part (a) reduces to the combination used in class.
- 2. (Elements of zero trace) In class we had the occasion to need elements $\alpha \in L$ with trace zero. For this, let $L_0 = \{ \alpha \in L \mid \operatorname{Tr}_K^L(\alpha) = 0 \}.$
 - (a) Show that $\operatorname{Tr}_{K}^{L}$ is a *K*-linear functional on *L*, so that L_{0} is a *K*-subspace of *L*.
 - (b) When char(K) = 0, show that $L = K \oplus L_0$ as vector spaces over K (direct sum of vector spaces; the analogue of direct product of groups). Conclude that when $[L:K] \ge 2$ the set $L_0 \setminus K$ is non-empty.
 - OPT Show that $\operatorname{Tr}_{K}^{L}$ is a non-zero linear functional in all characteristics.
 - OPT Show that L_0 is not contained in K unless [L:K] = char(K) = 2, in which case $L_0 = K$, or [L:K] = 1 in which case $L_0 = \{0\}$.
- 3. (Yet another definition) We continue with the separable extension L/K of degree n.
 - (a) Let $f \in K[x]$ be the (monic) minimal polynomial of $\alpha \in L$, say that $f = \sum_{i=0}^{d} a_i x^i$ with $a_d = 1$. Show that $\operatorname{Tr}_K^{K(\alpha)}(\alpha) = -a_{d-1}$ and that $N_K^{K(\alpha)}(\alpha) = (-1)^d a_0$.
 - (b) Show that $\operatorname{Tr}_{K}^{L}(\alpha) = -\frac{n}{d}a_{d-1}$ and that $N_{K}^{L}(\alpha) = (-1)^{n}a_{0}^{n/d}$. *Hint:* Recall the proof that [L:K] has *n* embeddings into a normal closure.
 - (c) Show that $\operatorname{Tr}_{K}^{L}(\alpha)$ and $N_{K}^{L}(\alpha)$ are, respectively, the trace and determinant of multiplication by α , thought of as a *K*-linear map $L \rightarrow L$. *Hint:* Show that, as *K*-vector spaces, we have $L \simeq (K(\alpha))^{n/d}$.

REMARK. From now on we define the trace and norm of α as in 3(c). Note that this definition makes sense even if L/K is not separable.

4. (Transitivity) Let $K \subset L \subset M$ be a tower of Galois extensions. Show that (a) $\operatorname{Tr}_{K}^{M} = \operatorname{Tr}_{K}^{L} \circ \operatorname{Tr}_{L}^{M}$. (b) $N_{K}^{M} = N_{K}^{L} \circ N_{L}^{M}$.

OPT Show that "Galois" can be replaced with "finite".

Purely inseparable extensions

- 5. Let L/K be an purely inseparable algebraic extension of fields of characteristic *p*.
 - (a) For every $\alpha \in L$ show that there exists $r \ge 0$ so that $\alpha^{p^r} \in K$. In fact, show that the minimal polynomial of α is of the form $x^{p^r} \alpha^{p^r}$.
 - *Hint*: Consider the minimal polynomials of α and α^p
 - Conclude that when [L:K] is finite it is a power of p.

OPT When [L:K] is finite show that Tr_K^L is identically zero.

Some examples

- 6. Solve the equation $t^{6} + 2t^{5} 5t^{4} + 9t^{3} 5t^{2} + 2t + 1$ by radicals. *Hint:* Try $u = t + \frac{1}{t}$.
- 7. Let K have characteristic zero and consider the system of equations over the field K(t):

$$\begin{cases} x^2 = y + t \\ y^2 = z + t \\ z^2 = x + t \end{cases}$$

- (a) Let (x, y, z) be a solution in a field extension of K(t). Show that x satisfies either $x^2 = x + t$ or a certain sextic equation over K(t).
- OPT Use a computer algebra system to verify that the sextic is relatively prime both to $x^2 x t$ and to its own formal derivative.
- (b) Show that the Galois group of the splitting field of the sextic preserves an equivalence relation among its six roots. *Hint*: Find an permutation of order 3 acting on the roots. This is visible in the original system.
- (c) Let $\{\alpha, \beta, \gamma\}$ be an equivalence class of roots, and let s(a, b, c) be a symmetric polynomial in three variables. Show that $s(\alpha, \beta, \gamma)$ belongs to an extension of K(t) of degree 2 at most. *Hint:* If $s(\alpha, \beta, \gamma)$ is a root of a quadratic, what should the other root be? Show that the coefficients of the putative quadratic are indeed invariant by the Galois group.
- (d) Show that the system of equations can be solved by radicals.*Hint*: For each equivalence class construct a cubic whose roots are the equivalence class and whose coefficients lie in a radical extension.
- OPT Show that knowing [K(t, x+y+z) : K(t)] = 2 where x, y, z are roots of the original system would have been enough.
- OPTIONAL Let $L = \mathbb{C}(x)$ (the field of rational functions in variable) and for $f \in L$ let $(\sigma(f))(x) = f(\frac{1}{x}), (\tau(f))(x) = f(1-x).$
 - (a) Show that $\sigma, \tau \in \operatorname{Aut}(L)$ and that $\sigma^2 = \tau^2 = 1$.
 - (b) Show that $G = \langle \sigma, \tau \rangle$ is a subgroup of order 6 of Aut(*L*) and find its isomorphism class.
 - (c) Let K = Fix(G). Find this field explicitly.