Math 422/501 Problem set 1 (due 16/9/09)

Some group theory

- 1. (Cyclic groups)
 - (a) Show that the infinite cyclic group \mathbb{Z} is the unique group which has non-trivial proper subgroups and is isomorphic to all of them.
 - (b) [optional] which groups have no non-trivial proper subgroups?
- 2. (Groups with many involutions) Let *G* be a finite group, and let $I = \{g \in G \mid g^2 = e\} \setminus \{e\}$ be its subset of *involutions* (*e* is the identity element of *G*).
 - (a) Show that *G* is abelian if it has *exponent* 2, that is if $G = I \cup \{e\}$.
 - (b) Show that G is abelian if $|I| \ge \frac{3}{4} |G|$.

Some polynomial algebra

- 3. Show that (x-y) divides $(x^n y^n)$ in $\mathbb{Z}[x, y]$. Conclude that for any ring *R*, polynomial $P \in R[x]$ and element $a \in R$ such that P(a) = 0 one has (x-a)|P in R[x].
- 4. Let *R* be an integral domain, $P \in R[x]$, $\{a_i\}_{i=1}^k \subset R$ distinct zeroes of *P*. Show that $\prod_i (x a_i) | P$ in R[x]. Give a counterexample when *R* has zero-divisors.
- 5. Let $\mathscr{V}_n(x_1, \ldots, x_n) \in M_n(\mathbb{Z}[x_1, \ldots, x_n])$ be the *Vandermonde matrix* $(\mathscr{V}_n)_{ij} = x_i^{j-1}$. Let $V_n(\underline{x}) = \det(\mathscr{V}_n(\underline{x})) \in \mathbb{Z}[\underline{x}]$. Show that there exists $c_n \in \mathbb{Z}$ so that $V_n(\underline{x}) = c_n \prod_{i>j} (x_i x_j)$. *Hint:* Consider V_n as an element of $(\mathbb{Z}[x_1, \ldots, x_{n-1}])[x_n]$.
- 6. Setting $x_n = 0$ show that $c_n = c_{n-1}$, hence that $c_n = 1$ for all n.

Some abstract nonsense

DEFINITION. Let G, H be groups, and let $f: G \to H$ be a homomorphism. Say that f is a *monomorphism* if for every group K and every two distinct homomorphisms $g_1, g_2: K \to G$, the compositions $f \circ g_1, f \circ g_2: K \to H$ are distinct. Say that f is an *epimorphism* if for every group K and every two distinct homomorphisms $g_1, g_2: H \to K$ the compositions $g_i \circ f: G \to K$ are distinct.

- 7. Show that a homomorphism of groups is a monomorphism iff it is injective, an epimorphism iff it is surjective.
- 8. (Variants)
 - (a) Same as 7, but replace "group" with "vector space over the field *F*" and "homomorphism" with "*F*-linear map".
 - (b) Consider now the case of rings and ring homomorphisms. Show that monomorphisms are injective, but show that there exist non-surjective epimorphisms.
- *9. Replacing "groups" with "Hausdorff topological spaces" and "homomorphism" with "continuous map" show that:
 - (a) A continuous map is a monomorphism iff it is injective.
 - (b) A continuous map is an epimorphism iff its image is dense.

CHAPTER 2

Group actions