Math 437/537 Problem set 2 (due 30/9/09)

Primes

- 1. Let $a, b \in \mathbb{Z}$ be relatively prime. Show that *ab* is a perfect *k*th power iff both *a* and *b* are.
- 2. (Sum of divisors) For a positive integer *n* write $\sigma(n) = \sum_{d|n} d$ for the sum of its positive divisors (for example, $\sigma(6) = 1 + 2 + 3 + 6 = 12$).
 - (a) Let *p* be prime. Show that $\sigma(p^r) = \frac{p^{r+1}-1}{p-1}$.
 - (b) Let *a*, *b* be relatively prime. Show that $\sigma(ab) = \sigma(a)\sigma(b)$.
- 3. (Mersenne and Fermat primes)
 - (a) Let $2^a 1$ be prime. Show that *a* is prime.
 - (b) Let $2^b + 1$ be prime. Show that b is a power of 2.
- 4. A positive integer *n* is called *deficient*, *perfect*, *or abundant* if $\sigma(n) < 2n$, $\sigma(n) = 2n$, or $\sigma(n) > 2n$ (for example, 6 = 3 + 2 + 1 is perfect).
 - (a) Show that 2^a is deficient for all $a \ge 1$.
 - (b) Let *m* be odd, $a \ge 1$, and let $n = 2^a m$ be an even perfect number. Show that $2^{a+1} 1|m$. *Hint*: Use 2(b).
 - (c) Writing $r = \frac{m}{2^{a+1}-1}$ show that $(2^{a+1}-1)(m+r) = 2n$. Conclude that the only positive divisors of *m* are *r*, *m*.
 - (d) Show that every even perfect number is of the form $2^{p-1}(2^p-1)$ where p is a prime such that $2^p 1$ is also a prime.
- 5. For a prime p and integer n fine the exponent e so that $p^e || n!$ (read: p^e divides n! exactly; that is such that $p^e |n!$ but $p^{e+1} || n!$).

The Chinese Remainder Theorem

- 6. Call an integer *n* squarefree if it is not divisible by the square of a non-unit, that is if $d^2|n$ implies d|1.
 - (a) Show that *n* is squarefree iff it is not divisible by the square of any prime.
 - (b) Given $r \ge 1$ find $n \ge 1$ so that $\{n+j\}_{j=1}^r$ are all not squarefree. Conclude that there are arbitrarily large gaps between square-free numbers.
- 7. Find the smallest positive integer *x* such that $x \equiv 5(12)$, $x \equiv 2(5)$ and $x \equiv 4(7)$ all hold simultaneously.
- 8. Which integers x satisfy $2x \equiv 1$ (3), $3x \equiv 2$ (5), $4x \equiv 3$ (7), $7x \equiv 6$ (13) simultaneously? *Hint*: There is a simple solution!
- 9. For a non-zero integer *n* set $\phi(n) = |\{1 \le d \le |n| \mid (d,n) = 1\}|$ for the number of residue classes mod *n* which are relatively prime to *n*. Let *a*, *b* be relatively prime. Show that $\phi(ab) = \phi(a)\phi(b)$.

Congruences

- 10. Let (n,7) = 1. Show that $7|n^{12} 1$ directly (without using induction).
- 11. Let *a*, *b* be (separately) relatively prime to 91. Show that $a^{12} \equiv b^{12}$ (91).
- 12. (Divisibility tests I) For an integer *n* define $S_{k;10}(n)$ by the following procedure:
 - Write *n* in base 10
 - Divide the sequence of digits into blocks of length k, starting with the least significant digit (the last block may be shorter).
 - $S_{k;10}(n)$ is the sum of the numbers whose decimal representations are the blocks.
 - (a) Show $S_{1;10}(n) \equiv n(9)$, and explain how to use this to test whether an integer *n* is divisible by 3.
 - (b) Show $S_{6;10}(n) \equiv n(7)$, and explain how to use this to test whether an integer *n* is divisible by 7.
- 13. (General divisibility test) Given a base $b \ge 2$ and a number *d* relatively prime to *b* find *k* so that $S_{k;b}(n) \equiv n(d)$. Obtain a method to test whether numbers written in base *b* are divisible by *d*.