Math 437/537 Problem set 3 (due 16/10/09)

Euler function

Find all solutions in positive integers to ¢ (x) = 24.
For each n > 1 show that there are finitely many solutions to ¢ (x) = n.

Let f € Z[x] be a polynomial with integer coefficients. For m € Z> let Ny(m) denote the num-

ber of solutions in Z /mZ to the congruence f(x) =0 (m). Let ¢;(m) ={a € Z/mZ | (f(a),m) = 1}.
(a) Show that ¢, is multiplicative, that is that ¢(nm) = ¢(n)@s(m) whenever (m,n) = 1.

(b) For p prime and e > 1 find ¢/(p°) in terms of ¢/(p).

(c) For p prime show that ¢(p) +N¢(p) = p.

(@) Show that #”) =TT, (1~ "4} for all n

Multiplicative groups

Letm > 1 and let a,b € (Z/mZ)™ have orders r,s respectively. Let ¢ be the order of ab. Show:
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Let p be a prime. How many solutions are there to x* — x> 41 = 0 in Z/pZ?
Hint: Factor x'2 — 1 in Z[x].
Primality Testing I - Carmichael numbers

’ t and

We’d like to determine whether a given m € Z> is prime. For this we generate a € Z/mZ

(represented as integers in the range 0 < m — 1) and test their multiplicative properties mod m.

6.

Assume that our calculations produce some power a* with (ak,m) > 1 (perhaps k = 1!). Ex-
plain why this resolves the question about m.

We will therefore implicitly assume from now on that (a,m) = 1. Our first attempt will be to
generate numbers a € (Z/mZ)* and check whether a"~! = 1 (m).

7.

Show that if (a,561) = 1 then a>®® = 1(561) yet that 561 is composite.
Hint: use the Chinese Remainder Theorem.

8. Let p be a prime and assume p?|m. Show that (Z/mZ)™ contains an element of order p, and
conclude that there exists a € (Z/mZ)* such that a" =1 # 1 (m).
DEFINITION. Call a composite number m a Carmichael number if the statement of Fermat’s
little Theorem holds modulu , that is if for any a relatively prime to m one has ™! = 1 (m).
9. (Korselt’s criterion) Show that m is a Carmichael number iff it is square-free, and for every

plmonehas (p—1)|(m—1).

10. Find all Carmichael numbers of the form 3pg where 3 < p < g are primes.
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Primality Testing II - the Miller-Rabin test.

From now on we assume that m an odd number and write m — 1 =2°n withn odd. Let f <e—1
be maximal such that there exists x € (Z/mZ)™ with x2" = 1. Write s = n2/ and set

B:{ae(Z/mZ)X |a" = (m)or30§j<e:a"2jz—l(m)},

B ={ac(2/mL)"|a’==1(m)},
B — {aE (Z/mZ)™ ‘amil = l(m)} .

11. Show that B C B’ C B”, and that B’ and B” are closed under multiplication.

12. Let m be prime. Show that B = (Z/mZ)*.
Hint: If a" # 1 let bj = a*™. Then by = b5 and b, = 1.

13. Assume that m is composite and that B’ = (Z/mZ)™.
(a) Show that there exists relatively prime m,my such that m = mm,.
Hint: consider B”.
(b) Let x € Z satisfy x* = —1(m). Show that there exists y € Z such that y* = —1(m) but
y* = 1(m;y) and conclude that B’ is a proper subset.

14. Assume that m is composite. Shwo that b € (Z/mZ)” \ B’ implies bB' N B’ = 0 and conclude
that |B| < |B| < 5 [(Z/mZ)*|.

ALGORITHM. (Rabin) Input: an integer m > 2.

(1) If m is even, output “prime” if m = 2, “composite” otherwise and stop. If m is odd,

continue.
(2) Repeat the following k times (k is fixed in advance):
(a) Generate a € {1,...,m— 1}, uniformly at random.

(b) If (a,m) > 1, output “composite” and stop.
(c) Check whether a € B. If not, output “composite” and stop.
(3) Output “prime”.

15. (Primality testing is in BPP)
(a) Show that if m is prime, the algorithm always output “prime”.
(b) Show that if m is composite, the algorithm outputs “composite” with probability at least
1— 2.
2k

OPTIONAL Find c so that the algorithm runs in time O(k(log, m)°).
Hint: Given 1 < a < m— 1 efficiently calculate a,a?,a*,a®,a'®,... and use that to calculate

a"( mod m) in time polynomial in logn and logm.

REMARK. There exist infinitely many Carmichael numbers; see the paper of Alford, Granville
and Pomerance, Annals of Math. (2) v. 140 (1994).
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