Math 312: Problem set 2 (due 19/5/11)

Prime factorization

- 1. (§3.5.E2) Find the prime factorization of 111, 111.
- 2. Let (a, c) = 1. Show that (a, bc) = (a, b). *Hint:* Factor *a*,*b*,*c* into primes and calculate both sides explicitly.
- 3. Recall that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
 - (a) Give (with proof) a finite list of primes which contains all prime divisors of $\binom{30}{10}$.
 - (b) For each prime on your list, find the number of times it divides $\binom{30}{10}$. Give the prime factorization of this number.
- 4. We consider the equation $2^x + 3^y = z^2$ for unknown $x, y, z \in \mathbb{Z}_{>0}$.
 - (a) (The case y = 0) Find all non-negative integral solutions to $2^{x} + 1 = z^{2}$. *Hint*: Start by showing that both z - 1 and z + 1 must be powers of 2.
 - (b) (The case x = 0) Find all non-negative integral solutions to $1 + 3^y = z^2$. *Hint*: Which powers of 3 differ by 2?
 - (c) Let (x, y, z) be a solution with both of x, y positive and even. Show that z 2^{x/2} = 1. *Hint*: If 3 divides both z 2^{x/2} and z + 2^{x/2} it would divide their difference.
 (d) Continuing (c), show that 3^y = 2^{1+x/2} + 1 and find all solutions to this equation.
 - *Hint*: Both $3^{y/2} \pm 1$ must be powers of 2.
 - RMK We will show in future problem sets that if (x, y, z) is a solution to the equation above and x, y are positive then x, y are even.

Euclid's Algorithm

- 5. For each pair of integers a, b use Bezout's extension of Euclid's algorithm to find gcd(a, b) and integers x, y such that $ax + by = \gcd(a, b)$. Give your intermediate calculations.
 - (a) a = 5, b = 2.
 - (b) a = 60, b = 36.
- 6. Let a > b > 0.
 - (a) Show that $(2^a 1, 2^b 1) = (2^a 1, 2^{a-b} 1)$. *Hint*: Euclid's Lemma + problem 2.
 - (b) Show that $(2^a 1, 2^b 1) = 2^{(a,b)} 1$. *Hint*: Strong induction on a + b.
 - (c) Show that $(x^a 1, x^b 1) = x^{(a,b)} 1$ for all $a \ge b \ge 0$ and all $x \ge 2$.

Primes

7. For a positive integer *n*, show that n! + 1 has a prime divisor> *n*. Conclude that there are infinitely many primes.

For the next two problems use the identities $x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^k y^{n-1-k}$ and (for *n* odd) $x^n + y^n = (x + y) \sum_{k=0}^{n-1} (-1)^k x^k y^{n-1-k}$.

- 8. Let *a*, *n* be integers with $a \ge 1$, $n \ge 2$ such that $a^n 1$ is prime.
 - (a) Show that a = 2.
 - (b) Show that *n* is prime.*Hint:* This follows from 6(b) or from the identities above.
- 9. Let a, b, n be positive integers (with ab > 1) such that $a^n + b^n$ is prime. Show that n is a power of 2.

Linear equations

- 10. We study the equation ax + by = 0 where not both *a*, *b* are zero.
 - (a) Let *a*, *b* be relatively prime. Show that the solutions to ax + by = 0 are precisely the pairs of the form x = bz, y = -az with $z \in \mathbb{Z}$ arbitrary. *Hint*: Note that you both need to verify that these are solutions and to show that every solution is of this form.
 - (b) Now let d = (a, b) be anything. Find all solutions to the equation. *Hint:* Divide by *d*.
 - (c) Use part (a) to find all solutions to 5x + 6y = 1. *Hint*: 6-5=1.

Supplementary problems (not for submission): A counting proof of the infinitude of primes

- A. In the factorization $n = \prod_p p^{e_p}$ show that $e_p \le \log_2 n$.
- B. Assume that $\{p_j\}_{j=1}^r$ is the set of all primes, and let $x \ge 2$. Show that there are at most $(1 + \log_2 x)^r$ integers between 1 and *x*.
- C. Show that $\frac{(1+\log_2 x)^r}{x} \to 0$ as $x \to \infty$ and derive a contradiction.
- D. Use this idea to show that $\pi(x) \ge C \frac{\log_2 x}{\log_2 \log_2 x}$.
- E. (unrelated) Let $n = \prod_p p^{e_p} \ge 1$. Show that *n* has $\tau(n) = \prod_p (e_p + 1)$ positive divisors.