Math 312: Problem set 3 (due 25/5/11)

Calculation

- 1. (Dec 2010 final exam) Let $n = 3^{100}$ and let a be the 2n-digit number 858585...8585 where the digits 85 repeat n times. Is a divisible by 9? Prove your answer.
- 2. (Dec 2005 final exam)
 - (a) Show that $3^6 \equiv 1(7)$

Hint: Calculate 3^2 or 3^3 mod 7 first.

(b) Let $a \equiv b$ (6). Show that $3^a \equiv 3^b$ (7).

Hint: What can you say about $3^{|a-b|}$? Problem 8 may be useful.

- (c) Today is Thursday. What day will it be $10^{200,000,000,000}$ days from now?
- 3. ($\S4.1.E20$) Find the least non-negative residue mod 13 of the following numbers: 22, -100, 1001.
- 4. (squares mod small numbers)
 - (a) For each m = 3,4 find all residues $0 \le a < m$ which are square mod m (in other words for which there is an integer solution to $x^2 \equiv a(m)$).

Hint: Let x range over the residues mod m and see what values of a you get.

- (b) Find an integer x such that $x^2 \equiv -1$ (5).
- 5. Find all solutions to: $15x \equiv 9(25)$, $2x + 4y \equiv 6(8)$.
- 6. (CRT)
 - (a) (§4.3.E10) Find an integer that leaves a remainder of 9 when divided by 10 or 11 but is divisible by 13.
 - (b) (§4.3.E12) If eggs are removed from a basket 2,3,4,5,6 at a time, 1,2,3,4,5 eggs remain, respectively. If eggs are removed 7 at a time, no eggs remain. What is the least possible number of eggs in the basket?

Hint: Note that -1 satisfies the congruence conditions modulu 2,3,4,5,6 hence mod their LCM.

Problems

- 7. Powers and irrationals
 - (a) Let $n = \prod_p p^{e_p}$ be the prime factorization of a positive integer and let $k \ge 2$. Show that in the prime factorization of n^k every exponent is divisible by k. Coversely, let $m = \prod_p p^{f_p}$ where $k|f_p$ for all p. Show that m is the kth power of a positive integer.
 - (b) Show that $\sqrt{2}$ is not an integer, that is that there is no integer solution to $x^2 = 2$. Hint: What is the exponent of 2 in the prime factorization of 2? What do you know about the exponent of 2 in the prime factorization of x^2 ?
 - (c) Show that $\sqrt{2}$ is not a rational number, that is that there are no positive integers x, y such that $\left(\frac{x}{y}\right)^2 = 2$.

22

Hint: Consider the exponent of 2 on both sides of $x^2 = 2y^2$.

SUPP Show that $\sqrt{2} + \sqrt{3}$ is irrational.

Hint: Squaring shows that if this number is irrational then so is $\sqrt{6}$...

- 8. Let $a \equiv b(m)$. Show that $a^n \equiv b^n(m)$ for all $n \ge 0$.
- 9. Consider the numbers $2^x \mod 3$ and $3^y \mod 4$.
 - (a) Let $2^x + 3^y = z^2$ for some integers $x, y, z \ge 0$ where $x, y \ge 1$. Show that $(-1)^x \equiv z^2(3)$.
 - (b) Use problem 4 to show that $(-1)^x \equiv z^2$ (3) forces x to be even. *Hint*: Is (-1) a square mod 3?
 - (c) Now show that $(-1)^y \equiv z^2(4)$.
 - (d) Finally, show that this forces y to be even.
- 10. For $n = \sum_{j=0}^{J} 10^j a_j$ set $T(n) = \sum_{j=0}^{J} (-1)^j a_j$ (i.e. add the even digits and subtract the odd digits).
 - (a) Show that $T(n) \equiv n(11)$.
 - (b) Is the number from problem 1 divisible by 11? Justify your answer.
- 11. (Gaps between squarefree numbers)
 - (a) Let $\{p_j\}_{j=1}^J$ be distinct primes. Show that there exist positive integers x such that $p_j^2|x+j$. *Hint*: Rewrite the condition as a congruence condition on x and apply the CRT.
 - (*b) Call a number "squarefree" if it is not divisible by the square of a prime (15 is squarefree but 45 isn't). Show that there are arbitrarily large gaps between squarefree numbers.

Supplementary problems (not for submission)

- A. Show that every non-zero rational number can be uniquely written in the form $\varepsilon \prod_p p^{e_p}$ where $\varepsilon \in \{\pm 1\}$, $e_p \in \mathbb{Z}$ and $\{p \mid e_p \neq 0\}$ is finite. Show that a rational number is a kth power iff ε is a kth power and $k|e_p$ for all p.
- B. (The *p*-adic norm) For a rational number $a = \varepsilon \prod_p p^{e_p}$ with a factorization as above set $|n|_p = p^{-e_p}$ (and $|0|_p = 0$).
 - (a) Show that $|a+b|_p \le \max\{|a|_p, |b|_p\} \le |a|_p + |b|_p$ and $|ab|_p = |a|_p |b|_p$.
 - (b) Show that $d_p(a,b)$