Math 312: Problem Set 6 (due 14/6/11)

Primitive roots

- 1. For each p find a primitive root mod p, p^2 : {11, 13, 17, 19}. Justify your answers.
- 2. How many primitive roots are there mod 25? Find all of them.
- 3. (Wilson's Theorem, again)
 - (a) Let $r = \operatorname{ord}_m(a)$ and let S be the product of the r distinct residues which are powers of a mod m. Show that $\operatorname{ord}_m(S)$ is 1 if r is odd and 2 if r is even.
 - (b) Let *p* be an odd prime, and let $k \ge 1$. Show that the product of all invertible residues mod p^k is congruence to $-1 \mod p^k$.
- 4. (The quadratic character of -1) Let *p* be an odd prime, and let *r* be a primitive root mod *p*.
 - (a) Show that $r^{\frac{p-1}{2}} \equiv -1(p)$, and if $p \equiv 1(4)$ use that to find a number y such that $y^2 \equiv -1(p)$. *Hint:* For the first part, what are the solutions to $x^2 \equiv 1(p)$?
 - (b) Conversely, if there is y such that $y^2 \equiv -1(p)$ show that $\operatorname{ord}_p(y) = 4$ and conclude that $p \equiv 1(4)$.
- 5. (§9.2.E12) Let p be a prime. Find the least positive residue of the product of a set of $\phi(p-1)$ incongruent primitive roots mod p.
- 6. El-Gamal
 - (a) (§10.2.E6) Using ElGamal encryption with private key (p = 2543, r = 5, a = 99), sign the message P = 2525 [use the integer k = 257] and verify the signature.
 - (b) (§10.2.E8) Assume that two messages P_1 , P_2 are signed using the ElGamal system with private key (p, r, a) and *the same integer k* with resulting signatures (γ_1, s_1) , (γ_2, s_2) . Show that $\gamma_1 = \gamma_2$ and, assuming $s_1 s_2$ is invertible mod p 1, recover k from the given data. Use that to recover a.

Quadratic reciprocity

- 7. Let *p* be an odd prime and let $q|2^p 1$. Recall that $q \equiv 1 (2p)$.
 - (a) We have seen before that $\operatorname{ord}_q(2) = p$. Use this and Euler's criterion to show that 2 is a square mod q. Conclude that $q \equiv \pm 1(8)$.
 - (b) Show that $M_{17} = 2^{17} 1 < 132,000$ is prime, only trying to divide by three numbers.

RMK Why is it not necessary to show that these numbers are prime?

- 8. (Math 437 Midterm, 2009)
 - (a) Let $a \ge 3$ be odd and let $p|a^2 2$ be prime. Show that $p \equiv \pm 1(8)$.
 - (b) Let $a \ge 3$ be odd. Show that *some* prime divisor of $a^2 2$ is congruent to $-1 \mod 8$. *Hint*: What is the residue class of $a^2 - 2 \mod 8$?
 - (c) Show that there are infinitely many primes congruent to $-1 \mod 8$.

- 9. Evaulate the following Legendre symbols.
 (a) (⁴⁸/₁₀₃), (³³²⁵/₁₄₄₀₇), (¹⁹³⁸²/₄₈₃₉₇), using factorization and quadratic reciprocity.
 (b) (⁷⁹⁹/₃₇), (³¹³³/₃₁₃₇), (³⁹²⁷⁰/₄₉₁₇₇), using Jacobi symbols.
- 10. Let p be a prime such that q = 4p + 1 is also prime. Show that 2 is a primitive root mod q. *Hint:* Show that if $\operatorname{ord}_q(2) \neq q-1$ then it must divide one of $\frac{q-1}{2}$ and $\frac{q-1}{p}$, and consider those cases separately.

Supplementary problems (not for submission)