Math 342 Problem set 3 (due 27/9/11)

The natural numbers

- 1. Using the division Theorem, prove that if a, b are two non-zero integers then every common multiple of a, b is divisible by the least common multiple [a, b]. *Hint*: Show that the remainder obtained when dividing one common multiple by another is also a common multiple.
- 2. Prove Bezout's Theorem as follows: Given $a, b \in \mathbb{Z}$ not both zero let $I = \{xa + by \mid x, y \in \mathbb{Z}\}$. Show that the smallest positive member of *I* is the gcd of *a*,*b*. *Hint*: You need to show that *I* has positive members. To show that the number your produced divides *a* and *b* use the idea of problem 1.

Using Euclid's Algorithm

DEFINITION. We say that two integers *a*,*b* are *relatively prime* (or *coprime*) if (a,b) = 1.

- 3. For every integer *n* show that *n* and n + 1 are relatively prime.
- 4. Find the gcd of 98 and 21 using subtractions only (list your intermediate steps).
- 5. (§3A.E7) Improving Euclid's algorithm with the idea of the previous problem, find the gcd of 21063 and 43137, listing your intermediate steps (you may want to use a calculator). How many remainders did you calculate?

Using Bezout's Theorem

- 6.
- (a) Using Euclid's Algorithm, find integers r, s such that 12r + 17s = 1.
- (b) Find integers m, n such that 12m + 17n = 8.
- (c) You take a 12-quart jug and a 17-quart jug to a stream. How would you bring back exactly 8 quarts of water?

The efficiency of Euclid's Algorithm

Let a > b > 0 be two integers, and let $0 = r_0 < r_1 < r_2 < \cdots < r_{T-1}$ be the remainders calculated by the improved algorithm of problem 4 (starting with a, b), *in reverse order*. In other words, $r_0 = 0$ is the remainder of the final, exact, division of r_2 by r_1 . r_1 is the remainder when dividing r_3 by r_2 and so on, all the way to r_{T-1} which is the remainder of dividing a by b (which we denote r_T). Note that T is the number of divisions performed during the run.

Let $\{a_n\}_{n=0}^{\infty}$ be the Fibonacci sequence from Problem Set 2.

7. Prove by induction on *n* that, for $0 \le n \le T$, we have $a_n \le r_n$. *Hint*: For the induction step, express r_{n+1} using r_n , r_{n-1} and the quotient in the division, and use the defining property of the Fibonacci sequence. 8. The case n = T of what you just proved reads: $a_T \le b$. In the previous problem set you showed that for $T \ge 1$, $a_T \ge \frac{1}{3}R^T$ where $R = \frac{1+\sqrt{5}}{2}$. Conclude that, when running the improved algorithm on (a, b) one needs at most $C \log b + D$ divisions, where C, D are two constants. What are C, D?

Solving congruences

9. For each $a \in \{0, 1, 2\}$ find all $x \in \mathbb{Z}$ such that x^2 leaves remainder *a* when divided by 3. *Hint*: first show that the remainder of x^2 only depends on that of *x*, and then divide into cases based on the latter remainder.