Math 342 Problem set 4 (due 4/10/11)

The natural numbers

- 1. Show, for all $a, b, c \in \mathbb{Z}$:
 - (a) (cancellation from both sides) (ac, bc) = c(a, b).
 - (b) (cancellation from one side) If (a, c) = 1 then (a, bc) = (a, b)*Hint*: can either do these directly from the definitions or using Prop. 29 from the notes.
- 2. $(\sqrt{15} \text{ and friends})$
 - (a) Show that $\sqrt{3}$ and $\sqrt{15}$ are irrational. *Hint*: Use a Theorem from class.
 - (*b) Show that $\sqrt{5}$ is not of the form $a + b\sqrt{15}$ for any $a, b \in \mathbb{Q}$. *Hint*: Assuming that $\sqrt{5} = a + b\sqrt{15}$ start by squaring both sides and using that $\sqrt{15} \notin \mathbb{Q}$ to learn something about a, b (but that's not the end of the problem ...)

SUPP For any $a, b \in \mathbb{O}$ show that $a\sqrt{2} + b\sqrt{3}$ is irrational unless a = b = 0.

Factorization in the integers and the rationals

- 3. Let $r \in \mathbb{Q} \setminus \{0\}$ be a non-zero rational number.
 - (a) Show that r can be written as a product $r = \varepsilon \prod_p p^{e_p}$ where $\varepsilon \in \{\pm 1\}$ is a sign, all $e_p \in \mathbb{Z}$, and all but finitely many of the e_p are zero.

Hint: Write $r = \varepsilon a/b$ with $\varepsilon \in \{\pm 1\}$ and $a, b \in \mathbb{Z}_{>1}$.

- (b) Write $\frac{58}{493}$, $-\frac{105}{99}$ as products of integral powers of primes. (c) Prove that the representation from (a) is unique, in other words that if we also have $r = \varepsilon' \prod_p p^{f_p}$ for $\varepsilon' \in \{\pm 1\}$ and $f_p \in \mathbb{Z}$ almost all of which are zero, then $\varepsilon' = \varepsilon$ and $f_p = e_p$ for all *p*.

Hint: Start by separating out the prime factors with positive and negative exponents on each side.

Ideals (an exercize with definitions)

DEFINITION. Call a non-empty subset $I \subset \mathbb{Z}$ an *ideal* if it is closed under addition (if $x, y \in I$ then $x + y \in I$) and under multiplication by elements of \mathbb{Z} (if $x \in I$ and $z \in \mathbb{Z}$ then $xz \in I$).

- 4. For $a \in \mathbb{Z}$ let $(a) = \{ca \mid c \in \mathbb{Z}\}$ be the set of multiples of a. Show that (a) is an ideal. Such ideals are called *principal*. *Hint*: This rephrases facts that you know about divisibility. You need to show, for example, that if x and y are multiples of a then x + y is also a multiple.
- 5. Let $I \subset \mathbb{Z}$ be an ideal. Show that *I* is principal. *Hint*: Use the argument from the second proof of Bezout's Theorem.
- 6. For $a, b \in \mathbb{Z}$ let (a, b) denote the set $\{xa + yb \mid x, y \in \mathbb{Z}\}$. Show that this set is an ideal. By problem 5 we have (a,b) = (d) for some $d \in \mathbb{Z}$. Show that d is the GCD of a and b. This justifies using (a,b) to denote both the gcd of the two numbers and the ideal generated by the two numbers.

- SUPP Let $I, J \subset \mathbb{Z}$ be ideals. Show that $I \cap J$ is an ideal, that is that the intersection is non-empty, closed under addition, and closed under multiplication by elements of \mathbb{Z} .
- 8. For $a, b \in \mathbb{Z}$ show that the set of common multiples of *a* and *b* is precisely $(a) \cap (b)$. Use the previous problem and problem 5 to show that every common multiple is a divisible by the least common multiple.

Congruences

- 9. Using the fact that $10 \equiv -1(11)$, find a simple criterion for deciding whether an integer *n* is divisible by 11. Use your criterion to decide if 76443 and 93874 are divisible by 11.
- 10. For each integer $a, 1 \le a \le 10$, check that $a^{10} 1$ is divisible by 11.

Supplmenetary problems: The *p*-adic distance

For an rational number r and a prime p let $v_p(r)$ denote the exponent e_p in the unique factorization from problem 3. Also set $v_p(0) = +\infty$ (∞ is a formal symbol here).

- A. For $r, s \in \mathbb{Q}$ show that $v_p(rs) = v_p(r) + v_p(s)$, $v_p(r+s) \ge \min \{v_p(r), v_p(s)\}$ (when r, s, or r+s is zero you need to impose rules for arithmetic and comparison with ∞ so the claim continues to work).
- For $a \neq b \in \mathbb{Q}$ set $|a-b|_p = p^{-v_p(a-b)}$ and call it the *p*-adic *distance* between *a*,*b*. For a = b we set $|a-b|_p = 0$ (in other words, we formally set $p^{-\infty} = 0$). It measure how well a-b is divisible by *p*.
- B For $a, b, c \in \mathbb{Q}$ show the triangle inequality $|a c|_p \le |a b|_p + |b c|_p$. Hint: (a - c) = (a - b) + (b - c).
- C. Show that the sequence $\{p^n\}_{n=1}^{\infty}$ converges to zero in the *p*-adic distance (that is, $|p^n 0|_p \to 0$ as $n \to \infty$).

REMARK. The sequence $\{p^{-n}\}_{n=1}^{\infty}$ cannot converge in this notion of distance: if it converged to some A then, after some point, we'll have $|p^{-n}-A|_p \leq 1$. By the triangle inequality this will mean $|p^{-n}|_p \leq |A|_p + 1$. Since $|p^{-n}|_p$ is not bounded, there is no limit. The notion of *p*-adic distance is central to modern number theory.

Supplmenetary problems: Divisors

Let $\tau(n)$ denote the number of divisors of *n* (e.g. $\tau(2) = 2$, $\tau(4) = 3$, $\tau(12) = 6$). Let $\sigma(n)$ denote the sum of divisors of *n* (e.g. $\sigma(2) = 3$, $\sigma(4) = 7$, $\sigma(12) = 28$).

- D. Let $n = \prod_p p^{e_p}$. Show that $\tau(n) = \prod_p (e_p + 1)$, and from this that if (n,m) = 1 then $\tau(nm) = \tau(n)\tau(m)$ (we say " $\tau(n)$ is a *multiplicative function*").
- E. Find a formula for $\sigma(n)$ in terms of the prime factorization, and show that $\sigma(n)$ is also multiplicative.