1. For what values of c is f continuous on $(-\infty, \infty)$?

$$
f(x)= \begin{cases}c x^{2}+1 & \text { if } x \leq 3 \\ 2 x+c & \text { if } \mathbf{x}>3\end{cases}
$$

Solution: f is continuous everywhere except 3 (defined by formula without bad points). At $3, \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(c x^{2}+1\right)=c\left(3^{2}\right)+1=9 c+1=f(3)$ and $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(2 x+c)=2 \cdot 3+c$. So both the right- and left- limit exists, and the left one is equal to the value of the function. So f is continuous if and only if the right limit is also equal to this value, that is fi $9 c+1=6+c$. which is equivalent to $c=\frac{5}{8}$.
2. Show that for some x we have $f(x)=100$ if

$$
f(x)=x^{3}+x \sin x
$$

Solution: f is continuous everywhere. Also $f(0)=0^{3}+0 \sin 0=0$ and $f(10)=$ $1000+10 \sin 10 \geq 1000-10=990$. Since 100 lies between $f(0)$ and $f(10)$, by the IVT there is x between 0 and 10 such that $f(x)=100$.
3. Find

$$
\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+a}-\sqrt{x^{2}+b}\right)
$$

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+a}-\sqrt{x^{2}+b}\right) & =\lim _{x \rightarrow \infty} x \frac{\left(\sqrt{x^{2}+a}-\sqrt{x^{2}+b}\right)\left(\sqrt{x^{2}+a}+\sqrt{x^{2}+b}\right)}{\left(\sqrt{x^{2}+a}+\sqrt{x^{2}+b}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+a}+\sqrt{x^{2}+b}} \cdot\left(\left(x^{2}+a\right)-\left(x^{2}+b\right)\right) \\
& =\lim _{x \rightarrow \infty} \frac{a-b}{\sqrt{1+a / x^{2}}+\sqrt{1+b / x^{2}}} \\
& =\frac{a-b}{\sqrt{1+a \lim _{x \rightarrow \infty} \frac{1}{x^{2}}}+\sqrt{1+b \lim _{x \rightarrow \infty} \frac{1}{x^{2}}}} \\
& =\frac{a-b}{\sqrt{1+a \cdot 0}+\sqrt{1+a \cdot 0}}=\frac{a-b}{2} .
\end{aligned}
$$

