1. Express the following limit as the derivative of a function f at a point a

T (e7eh) — cos(e”)
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Solution: f(z) = cos(e®) at a = 7 (note that e’e” = e"*h).

2. Differentiate
fla) = 2%

using the definition of the derivative.
You may use the formula

(a —b)(a® +ab+ b*) = a® — b°.
Solution: For any = # 0, h # 0 where f(z + h) is defined,
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3. Find the equation of the line that is tangent to the curve y = e” and passes through
the origin.
Note: this is not the same as the line passing through the point (0,1) on the curve.
Solution: Suppose the line meets the curve at the point (a,e®). Its slope is then
% = % The derivative of y = €” is ¢y = €” so being tangent to the curve at (a,e?),
the slope of the line is also e®. We thus have % =¢e% 30 a = 1. The line then has slope
e® = e so it is the line y = ex.



