1. Express the following limit as the derivative of a function $f$ at a point $a$

$$
\lim _{h \rightarrow 0} \frac{\cos \left(e^{7} e^{h}\right)-\cos \left(e^{7}\right)}{h}
$$

Solution: $f(x)=\cos \left(e^{x}\right)$ at $a=7$ (note that $e^{7} e^{h}=e^{7+h}$ ).
2. Differentiate

$$
f(x)=x^{2 / 3}
$$

using the definition of the derivative.
You may use the formula

$$
(a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3} .
$$

Solution: For any $x \neq 0, h \neq 0$ where $f(x+h)$ is defined,

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{(x+h)^{2 / 3}-x^{2 / 3}}{h} \\
& =\frac{1}{h} \frac{\left((x+h)^{2 / 3}\right)^{3}-\left(x^{2 / 3}\right)^{3}}{\left((x+h)^{2 / 3}\right)^{2}+(x+h)^{2 / 3} x^{2 / 3}+\left(x^{2 / 3}\right)^{2}} \\
& =\frac{(x+h)^{2}-x^{2}}{h} \cdot \frac{1}{(x+h)^{4 / 3}+(x+h)^{2 / 3} x^{2 / 3}+x^{4 / 3}} .
\end{aligned}
$$

Now $\lim _{h \rightarrow 0} \frac{1}{(x+h)^{4 / 3}+(x+h)^{2 / 3} x^{2 / 3}+x^{4 / 3}}=\frac{1}{(x+0)^{4 / 3}+(x+0)^{2 / 3} x^{2 / 3}+x^{4 / 3}}=\frac{1}{3 x^{4 / 3}}$ and $\frac{(x+h)^{2}-x^{2}}{h}=$ $\frac{x^{2}-x^{2}+2 x h+h^{2}}{h}=2 x+h$ so $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=2 x$. From the product rule for limits get

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{2 / 3}-x^{2 / 3}}{h}=\frac{1}{3 x^{4 / 3}} \cdot 2 x=\frac{2}{3 x^{1 / 3}}=\frac{2}{3} x^{-1 / 3} .
$$

3. Find the equation of the line that is tangent to the curve $y=e^{x}$ and passes through the origin.
Note: this is not the same as the line passing through the point $(0,1)$ on the curve.
Solution: Suppose the line meets the curve at the point $\left(a, e^{a}\right)$. Its slope is then $\frac{e^{a}-0}{a-0}=\frac{e^{a}}{a}$. The derivative of $y=e^{x}$ is $y^{\prime}=e^{x}$ so being tangent to the curve at ( $a, e^{a}$ ), the slope of the line is also $e^{a}$. We thus have $\frac{e^{a}}{a}=e^{a}$ so $a=1$. The line then has slope $e^{a}=e$ so it is the line $y=e x$.
