1. Find $\frac{d y}{d x}$ by implicit differentiation if

$$
e^{x / y}=x-y
$$

Solution: We differentiate both sides, and find:

$$
1-\frac{d y}{d x}=\frac{d}{d x}\left(e^{x / y}\right) \stackrel{\text { chain }}{=} e^{x / y} \frac{d}{d x}\left(\frac{x}{y}\right) \stackrel{\text { quot }}{=} e^{x / y}\left(\frac{1}{y}-\frac{x}{y^{2}} \frac{d y}{d x}\right) .
$$

Rearranging this reads:

$$
\left[\frac{x}{y^{2}} e^{x / y}-1\right] \frac{d y}{d x}=\frac{1}{y} e^{x / y}-1
$$

that is

$$
\frac{d y}{d x}=\frac{\frac{1}{y} e^{x / y}-1}{\frac{x}{y^{2}}{ }^{x / y}-1}=\frac{y e^{x / y}-y^{2}}{x e^{x / y}-y^{2}} .
$$

2. Differentiate

$$
y=\sqrt{\arctan x} .
$$

Solution: We can write this as $\arctan x=y^{2}$ and hence $\tan y^{2}=x$. We now differentiate, using that $\frac{d(\tan y)}{d y}=1+\tan ^{2} y$ to get

$$
2 y\left(1+\tan ^{2} y^{2}\right) \frac{d y}{d x}=\frac{d x}{d x}=1
$$

so

$$
\frac{d y}{d x}=\frac{1}{2 y\left(1+\tan ^{2} y^{2}\right)}=\frac{1}{2 \sqrt{\arctan x}\left(1+x^{2}\right)} .
$$

3. Find y^{\prime} at the point where $x=0$ if

$$
x y+e^{y}=e .
$$

Solution: Setting $x=0$ we find $e^{y(0)}=e=e^{1}$ so $y(0)=1$ and the point on the curve is $(0,1)$. We now differentiate both sides, using the product rule and the chain rule to get:

$$
y+x \frac{d y}{d x}+e^{y} \frac{d y}{d x}=0
$$

so

$$
\frac{d y}{d x}=-\frac{y}{x+e^{y}} .
$$

When $x=0$ and $y=1$ this reads

$$
y^{\prime}(0)=-\frac{1}{e} .
$$

