1. Differentiate

$$
(\tan x)^{1 / x} .
$$

Solution: Let $f(x)=(\tan x)^{1 / x}$. Then $\ln f=\frac{1}{x} \ln (\tan x)$ and $(\ln f)^{\prime}=-\frac{1}{x^{2}} \ln (\tan x)+$ $\frac{1}{x \tan x}\left(1+\tan ^{2} x\right)$ so

$$
f^{\prime}(x)=f(x)(\ln f(x))^{\prime}=-\frac{1}{x^{2}}(\tan x)^{\frac{1}{x}} \ln (\tan x)+\frac{1+\tan ^{2} x}{x}(\tan x)^{\frac{1}{x}-1}
$$

2. A ball is thrown up. At time t it is at height $5 t-10 t^{2}$. When is it at rest?

Solution: If the position is $y(t)=5 t-10 t^{2}$ then the velocity at time t is $v(t)=\frac{d y}{d t}=$ $5-20 t$ and this is zero when $t=\frac{1}{4}$.
3. A freshley brewed cup of coffee has temperature $95^{\circ} \mathrm{C}$ is a $20^{\circ} \mathrm{C}$ room. After 30 minutes its temperature is $70^{\circ} \mathrm{C}$. When it is cooling at the rate of $1^{\circ} \mathrm{C} / \mathrm{min}$?
Solution: We suppose that the temperature follows Newton's law of cooling, that is that for some constant $k, T^{\prime}=k(T-20)$ where T is the temperature of the cup in degrees celsius. Switching to the variable $y=T-20$ we have $y^{\prime}=T^{\prime}$ by the sum rule so that $y^{\prime}=k y$. It follows that y decays exponentially: $y=C e^{k t}$. If $t=0$ is the time of the brewing then $y(0)=T(0)-20=75$ so $C=75$. At $t=30$ minutes we have $y(30)=75 e^{30 k}$ and also $y(30)=T(30)-20=50$. It follows that

$$
e^{30 k}=\frac{50}{75}=\frac{2}{3}
$$

so

$$
k=\frac{1}{30} \ln \frac{2}{3} .
$$

Finally, we need to find t such that $T^{\prime}=-1$. Since $T^{\prime}=y^{\prime}$ and $y^{\prime}=\left(C e^{k t}\right)^{\prime}=C k e^{k t}$ we need to find t such that

$$
C k e^{k t}=-1
$$

or

$$
k t=\ln \left(-\frac{1}{C k}\right)=-\ln (-C k)
$$

(note that k is negative!). It follows that the time is

$$
t=-\frac{\ln (-C k)}{k}=30 \frac{\ln (-C k)}{\ln \frac{3}{2}}=30 \frac{\ln \left(\frac{75}{30} \ln \frac{3}{2}\right)}{\ln \left(\frac{3}{2}\right)}=30 \frac{\ln \left(\frac{5}{2}\right)+\ln \ln \left(\frac{3}{2}\right)}{\ln \left(\frac{3}{2}\right)} .
$$

