1. Find the absolute maximum and minimum of $f(x)=\ln \left(x^{2}+x+1\right)$ in the interval $[-1,1]$.
Solution: f is differentiable on the interval $\left(x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}>0\right.$ so f is well-defined for all x, differentiable by the chain rule, hence continuous) so acheives its minimum and maximum. These must occur at endpoints or critical points. $f^{\prime}(x)=$ $\frac{1}{x^{2}+x+1}\left(x^{2}+x+1\right)^{\prime}=\frac{2 x+1}{x^{2}+x+1}$ and this vanishes only if $2 x+1=0$ ie if $x=-\frac{1}{2}$. We have $f(-1)=\ln (1-1+1)=\ln 1=0, f(1)=\ln 3$ and $f\left(-\frac{1}{2}\right)=\ln \left(\frac{1}{4}-\frac{1}{2}+1\right)=\ln \frac{3}{4}$. Since $\frac{3}{4}<1<3$ we have $\ln \frac{3}{4}<0<\ln 3$ so the absolute maximum is $\ln 3$ at $x=1$ and the absolute minimum is $\ln \frac{3}{4}$ at $x=-\frac{1}{2}$.
2. The function f is continuous and differentiable on the interval $[2,5]$. If $f(5)=7$ and $f^{\prime}(x) \leq 2$ what is the smallest $f(2)$ can be?
Solution: Since f is differentiable on $[2,5]$ we can apply the MVT there to get $c \in(2,5)$ such that $\frac{f(5)-f(2)}{5-2}=f^{\prime}(c) \leq 2$. It follows that $f(5)-f(2) \leq 2 \cdot(5-2)=6$ so

$$
f(2) \geq f(5)-6=1
$$

[to see that $f(2)=1$ is possible consider $f(x)=2 x-3)$.
3. Two runners start a race at the same time, and finish in a tie. Show at the some time during the race they were running at the same speed. (Hint: use the function $h(t)=f(t)-g(t)$ where $f(t), g(t)$ are the position functions of the runners.
Solution: Let T be the time of the end of the race. We are then given that $h(0)=$ $f(0)-g(0)=0$ (the runners start together) and $h(T)=f(T)-g(T)=0$ (they finish together). We suppose that h is differentiable, at which point by the MVT there is $t \in(0, T)$ such that $h^{\prime}(t)=\frac{h(T)-f(0)}{T-0}=0$. This means $f^{\prime}(t)-g^{\prime}(t)=0$ so at the time t the two runners are running at the same speed.

