1. Evaluate the following limit:

$$\lim_{x \to 0^+} x^2 \ln x$$

Solution: Since $\lim_{x\to 0} x^2 = 0$ while $\lim_{x\to 0^+} \ln x = -\infty$ this is an indeterminate form, and we may use l'Hôpital's rule. Thus, using $(\ln x)' = \frac{1}{x}$ and $(x^{-2})' = -2x^{-3}$,

$$\lim_{x \to 0^+} \left(x^2 \ln x \right) = \lim_{x \to 0^+} \frac{\ln x}{x^{-2}} = \lim_{x \to 0^+} \frac{1/x}{-2x^{-3}} = \lim_{x \to 0^+} -\frac{x^2}{2} = 0 \,.$$

2. Let

$$f(x) = \frac{1}{x^2 - 9}$$

- (a) What is the domain of f?
 Solution: Since x²-9 = (x 3) (x + 3), the domain is (-∞, -3)∪(-3, 3)∪(3, ∞) (equivalently, the real line except for ±3).
- (b) Find any vertical and horizontal asymptotes. **Solution:** We have $\lim_{x\to-\infty} (x^2 - 9) = \lim_{x\to+\infty} (x^2 - 9) = +\infty$ so $\lim_{x\to\pm\infty} \frac{1}{x^2 - 9} = 0$ and there are horizontal asymptotes on both sides. Also, $\lim_{x\to-3^-} \frac{1}{(x-3)(x+3)} = +\infty$, $\lim_{x\to-3^+} \frac{1}{(x-3)(x+3)} = -\infty$, $\lim_{x\to3^-} \frac{1}{(x-3)(x+3)} = -\infty$, $\lim_{x\to3^+} \frac{1}{(x-3)(x+3)} = +\infty$ so there are vertical asymptotes at ± 3 .
- 3. (Derivatives) Continuing with the same f.
 - (a) Where is f increasing? Decreasing? Find all critical numbers and local maxima and minima.

Solution: By the chain rule, $f'(x) = ((x^2 - 9)^{-1})' = -(x^2 - 9)^{-2}(x^2 - 9)' = \frac{-2x}{(x^2 - 9)^2}$. This is positive for x < 0, $x \neq -3$, negative for for x > 0, $x \neq 3$ and zero exactly at x = 0. The function is therefore increasing on $(-\infty, -3)$ and (-3, 0), decreasing on (0, 3) and $(3, \infty)$ and has a local maximum at x = 0, which is also the only critical number.

(b) Where is f concave up? concave down? Find all inflection points. You may use that

$$f''(x) = \frac{6(x^2+3)}{(x^2-9)^3}$$

Solution: Since $\frac{6(x^2+3)}{(x^2-9)^2} > 0$ where defined, f''(x) > 0 when $x^2 > 9$ and f''(x) < 0 where $x^2 < 9$. In other words, f is concave up on $(-\infty, -3)$ and $(3, \infty)$ and concave down on (-3, 3).