1. Evaluate the following limit:

$$
\lim _{x \rightarrow 0^{+}} x^{2} \ln x
$$

Solution: Since $\lim _{x \rightarrow 0} x^{2}=0$ while $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$ this is an indeterminate form, and we may use l'Hôpital's rule. Thus, using $(\ln x)^{\prime}=\frac{1}{x}$ and $\left(x^{-2}\right)^{\prime}=-2 x^{-3}$,

$$
\lim _{x \rightarrow 0^{+}}\left(x^{2} \ln x\right)=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}}-\frac{x^{2}}{2}=0 .
$$

2. Let

$$
f(x)=\frac{1}{x^{2}-9}
$$

(a) What is the domain of f ?

Solution: Since $x^{2}-9=(x-3)(x+3)$, the domain is $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$ (equivalently, the real line except for ± 3).
(b) Find any vertical and horizontal asymptotes.

Solution: We have $\lim _{x \rightarrow-\infty}\left(x^{2}-9\right)=\lim _{x \rightarrow+\infty}\left(x^{2}-9\right)=+\infty$ so $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{2}-9}=$ 0 and there are horizontal asymptotes on both sides. Also, $\lim _{x \rightarrow-3^{-}} \frac{1}{(x-3)(x+3)}=$ $+\infty, \lim _{x \rightarrow-3^{+}} \frac{1}{(x-3)(x+3)}=-\infty, \lim _{x \rightarrow 3^{-}} \frac{1}{(x-3)(x+3)}=-\infty, \lim _{x \rightarrow 3^{+}} \frac{1}{(x-3)(x+3)}=$ $+\infty$ so there are vertical asymptotes at ± 3.
3. (Derivatives) Continuing with the same f.
(a) Where is f increasing? Decreasing? Find all critical numbers and local maxima and minima.
Solution: By the chain rule, $f^{\prime}(x)=\left(\left(x^{2}-9\right)^{-1}\right)^{\prime}=-\left(x^{2}-9\right)^{-2}\left(x^{2}-9\right)^{\prime}=$ $\frac{-2 x}{\left(x^{2}-9\right)^{2}}$. This is positive for $x<0, x \neq-3$, negative for for $x>0, x \neq 3$ and zero exactly at $x=0$. The function is therefore increasing on $(-\infty,-3)$ and $(-3,0)$, decreasing on $(0,3)$ and $(3, \infty)$ and has a local maximum at $x=0$, which is also the only critical number.
(b) Where is f concave up? concave down? Find all inflection points. You may use that

$$
f^{\prime \prime}(x)=\frac{6\left(x^{2}+3\right)}{\left(x^{2}-9\right)^{3}}
$$

Solution: Since $\frac{6\left(x^{2}+3\right)}{\left(x^{2}-9\right)^{2}}>0$ where defined, $f^{\prime \prime}(x)>0$ when $x^{2}>9$ and $f^{\prime \prime}(x)<0$ where $x^{2}<9$. In other words, f is concave up on $(-\infty,-3)$ and $(3, \infty)$ and concave down on $(-3,3)$.

