MATH 100 - WORKSHEET 15 LOGARITHMS AND THEIR DERIVATIVES

1. Logarithms

Summary.

$$
\log _{b}\left(b^{x}\right)=b^{\log _{b} x}=x
$$

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y \quad \log _{b}\left(x^{y}\right)=y \log _{b} x
$$

$$
\log _{b} \frac{1}{x}=-\log _{b} x
$$

Review of calculations.
(1) Simplify the following logarithms
(a) $\ln \left(e^{10}\right)=10$ by definition.
(b) [Answer in terms of $\ln 2] \cdot \ln \left(2^{100}\right)=100 \ln 2$.

Justification: (1) $\ln \left(x^{y}\right)=y \ln x$ or (2) $e^{\ln 2}=2$ means $e^{100 \ln 2}=\left(e^{\ln 2}\right)^{100}=2^{100}$.
(2) A drug in a patient has a metabolic half-life of 6 hours. Suppose a patient ingests a dose D_{0} of the drug. Write a formula for the amount of drug present in the patient t hours afterward:

$$
D(t)=D_{0} \cdot 2^{-(t / 6)}
$$

Justification: The dose drops by a factor of 2 every 6 hours, so in t hours there are $t / 6$ halvings.
(3) A variant on Moore's Law states that computing power doubles every 18 months. Suppose computers today can do N_{0} operations per second.
(a) Write a formula for the power of computers t years into the future:

- Computers t years from now will be able to do $N(t)$ operations per second where

$$
N(t)=N_{0} 2^{2 t / 3}
$$

Justification: $\frac{2}{3} t$ doublings in t years.
(b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
Solution: In 3 years computers will be $2^{2 \cdot 3 / 3}=4$ times as powerful as today's, so the total wait time is $3+\frac{10}{4}=5.5$ years.
(c) At what time will computers be powerful enough to complete the task in 6 months?

Solution: Computers t years in the future will compete the task in $10 \cdot 2^{-2 t / 3}$ years, so we should wait until $10 \cdot 2^{-2 t / 3}=\frac{1}{2}$. Taking logarithms we find

$$
-\log 2=\log \frac{1}{2}=\log \left(10 \cdot 2^{-2 t / 3}\right)=\log 10+\log \left(2^{-2 t / 3}\right)=\log 10-\frac{2 t}{3} \log 2
$$

so

$$
\frac{2 t}{3}=\frac{\log 10+\log 2}{\log 2}
$$

and

$$
t=\frac{3}{2} \frac{\log 20}{\log 2} .
$$

2. Differentiation

$$
(\ln x)^{\prime}=\frac{1}{x} \quad f^{\prime}=f(\ln f)^{\prime}
$$

Example 1. Differentiate $\ln |x|$.
Solution: For $x>0$ we have $\ln |x|=x$ so $(\ln |x|)^{\prime}=(\ln x)^{\prime}=\frac{1}{x}$. For $x<0$ we have $\ln |x|=\ln (-x)$ so $(\ln |x|)^{\prime}=\frac{1}{-x} \cdot(-1)=\frac{1}{x}$ by the chain rule. Conclude that

$$
(\ln |x|)^{\prime}=\frac{1}{x}
$$

for all $x \neq 0$.
(1) Differentiate
(a) $f(x)=x^{2} \ln \left(1+x^{2}\right) \cdot f^{\prime}(x) \stackrel{\text { pdt }}{=} 2 x \ln \left(1+x^{2}\right)+x^{2}\left(\ln \left(1+x^{2}\right)\right)^{\prime} \stackrel{\text { chain }}{=} 2 x \ln \left(1+x^{2}\right)+x^{2}\left(\frac{1}{1+x^{2}} \cdot(2 x)\right)=$ $2 x \ln \left(1+x^{2}\right)+\frac{2 x^{3}}{1+x^{2}}$.
(b) $g(r)=\frac{1}{\ln (\sin r)} \cdot g^{\prime}(r) \stackrel{\text { qout }}{=}-\frac{1}{(\ln \sin r)^{2}}(\ln (\sin r))^{\prime} \stackrel{\text { chain }}{=}-\frac{1}{(\ln \sin r)^{2}} \frac{1}{\sin r}(\sin r)^{\prime} \stackrel{\text { chain }}{=}-\frac{1}{(\ln \sin r)^{2}} \frac{\cos r}{\sin r}$.
(c) $h(t)=\ln \left(t^{2}+3 t\right) \cdot h^{\prime}(t) \stackrel{\text { chain }}{=} \frac{2 t+3}{t^{2}+3 t}$. But also $\ln \left(t^{2}+3 t\right)=\ln (t(t+3))=\ln t+\ln (t+3)$ so

$$
h^{\prime}(t)=\frac{1}{t}+\frac{1}{t+3}
$$

(d) Find y^{\prime} if $\ln (x+y)=e^{y}$.

Solution: Differentiating both sides we see $(\ln (x+y))^{\prime} \stackrel{\text { chain }}{=} \frac{1}{x+y}(x+y)^{\prime}=\frac{1+y^{\prime}}{x+y}$ and $\left(e^{y}\right)^{\prime \text { chain }}=$ $e^{y} y^{\prime}$ so

$$
\frac{1+y^{\prime}}{x+y}=e^{y} y^{\prime}
$$

which we can solve for y^{\prime} :

$$
y^{\prime}=\frac{1}{(x+y) e^{y}-1}
$$

(2) Logarithm Laws
(a) Using the chain rule, $\frac{d(\ln (a x))}{\mathrm{d} x}=\frac{1}{a x} \cdot a=\frac{1}{x}$.
(b) Simplify $\ln (a x)$ and explain why $(\ln (a x))^{\prime}=(\ln x)^{\prime} \cdot \ln (a x)=\ln a+\ln x$. Since $\ln a$ is constant, $(\ln (a x))^{\prime}=0+(\ln x)^{\prime}=\frac{1}{x}$ no matter what a is.
(3) Differentiate
(a) Let $f(x)=\frac{x \cos x}{\sqrt{5+x}}$. Then $\ln f=\ln x+\ln \cos x-\frac{1}{2} \ln (x+5)$ so $(\ln f)^{\prime} \stackrel{\text { sum }}{=}(\ln x)^{\prime}+(\ln \cos x)^{\prime}-$ $\frac{1}{2}(\ln (x+5))^{\prime} \stackrel{\text { chain }}{=} \frac{1}{x}-\frac{\sin x}{\cos x}-\frac{1}{2(x+5)}$ so $\left(\frac{x \cos x}{\sqrt{5+x}}\right)^{\prime}=\left(\frac{x \cos x}{\sqrt{5+x}}\right)\left(\frac{1}{x}-\frac{\sin x}{\cos x}-\frac{1}{2(x+5)}\right)$.
(b) Let $f(x)=x^{x}$. Then $\ln f=x \ln x$ so $(\ln f)^{\prime} \stackrel{\text { pdt }}{=} 1 \ln x+x \frac{1}{x}=\ln x+1$ and $\left(x^{x}\right)^{\prime}=x^{x}(1+\ln x)$.
(c) Let $f(x)=(\ln x)^{\cos x}$. Then $\ln f=(\cos x)(\ln \ln x)$ and $(\ln f)^{\prime} \stackrel{\text { pdt }}{=}-(\sin x)(\ln \ln x)+\cos x(\ln \ln x)^{\prime} \stackrel{\text { chain }}{=}$ $-\sin x \ln \ln x+\cos x \frac{1}{\ln x}(\ln x)^{\prime}=-\sin x \ln \ln x+\frac{\cos x}{x \ln x}$ so

$$
\left((\ln x)^{\cos x}\right)^{\prime}=(\ln x)^{\cos x}\left[\frac{\cos x}{x \ln x}-\sin x \ln \ln x\right] .
$$

