MATH 100 - WORKSHEET 15 LOGARITHMS AND THEIR DERIVATIVES

1. Logarithms

Summary.

$$\boxed{\log_b(b^x) = b^{\log_b x} = x}$$

$$\boxed{\log_b(x^y) = \log_b x + \log_b y}$$

$$\boxed{\log_b(x^y) = y \log_b x}$$

$$\log_b \frac{1}{x} = -\log_b x$$

Review of calculations.

(1) Simplify the following logarithms

- (a) $\ln(e^{10}) = 10$ by definition.
- (b) [Answer in terms of $\ln 2$]. $\ln(2^{100}) = 100 \ln 2$.

Justification: (1) $\ln(x^y) = y \ln x$ or (2) $e^{\ln 2} = 2$ means $e^{100 \ln 2} = (e^{\ln 2})^{100} = 2^{100}$

(2) A drug in a patient has a metabolic half-life of 6 hours. Suppose a patient ingests a dose D_0 of the drug. Write a formula for the amount of drug present in the patient t hours afterward:

$$D(t) = D_0 \cdot 2^{-\left\lfloor (t/6) \right\rfloor}$$

Justification: The dose drops by a factor of 2 every 6 hours, so in t hours there are t/6 halvings.

- (3) A variant on Moore's Law states that computing power doubles every 18 months. Suppose computers today can do N_0 operations per second.
 - (a) Write a formula for the power of computers t years into the future:
 - Computers t years from now will be able to do N(t) operations per second where

$$N(t) = \boxed{N_0 2^{2t/3}}$$

Justification: $\frac{2}{3}t$ doublings in t years.

(b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?

Solution: In 3 years computers will be $2^{2\cdot3/3} = 4$ times as powerful as today's, so the total wait time is $3 + \frac{10}{4} = 5.5$ years.

(c) At what time will computers be powerful enough to complete the task in 6 months?

Solution: Computers t years in the future will compete the task in $10 \cdot 2^{-2t/3}$ years, so we should wait until $10 \cdot 2^{-2t/3} = \frac{1}{2}$. Taking logarithms we find

$$-\log 2 = \log \frac{1}{2} = \log \left(10 \cdot 2^{-2t/3} \right) = \log 10 + \log \left(2^{-2t/3} \right) = \log 10 - \frac{2t}{3} \log 2$$
so
$$\frac{2t}{3} = \frac{\log 10 + \log 2}{\log 2}$$
and

ar

$$t = \frac{3}{2} \frac{\log 20}{\log 2}$$

Date: 10/10/2012.

2. Differentiation

$$\boxed{(\ln x)' = \frac{1}{x}} \qquad \qquad \boxed{f' = f (\ln f)'}$$

Example 1. Differentiate $\ln |x|$.

Solution: For x > 0 we have $\ln |x| = x$ so $(\ln |x|)' = (\ln x)' = \frac{1}{x}$. For x < 0 we have $\ln |x| = \ln(-x)$ so $(\ln |x|)' = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$ by the chain rule. Conclude that

$$\left(\ln|x|\right)' = \frac{1}{x}$$

for all $x \neq 0$.

- (1) Differentiate
 - (a) $f(x) = x^2 \ln(1+x^2)$. $f'(x) \stackrel{\text{pdt}}{=} 2x \ln(1+x^2) + x^2 \left(\ln(1+x^2)\right)' \stackrel{\text{chain}}{=} 2x \ln(1+x^2) + x^2 \left(\frac{1}{1+x^2} \cdot (2x)\right) = \frac{2x \ln(1+x^2) + \frac{2x^3}{1+x^2}}{1+x^2}$. (b) $g(r) = \frac{1}{\ln(\sin r)}$. $g'(r) \stackrel{\text{qout}}{=} -\frac{1}{(\ln \sin r)^2} (\ln(\sin r))' \stackrel{\text{chain}}{=} -\frac{1}{(\ln \sin r)^2} \frac{1}{\sin r} (\sin r)' \stackrel{\text{chain}}{=} -\frac{1}{(\ln \sin r)^2} \frac{\cos r}{\sin r}$ (c) $h(t) = \ln(t^2 + 3t)$. $h'(t) \stackrel{\text{chain}}{=} \boxed{\frac{2t+3}{t^2+3t}}$. But also $\ln(t^2 + 3t) = \ln(t(t+3)) = \ln t + \ln(t+3)$ so $h'(t) = \boxed{\frac{1}{t} + \frac{1}{t+3}}$ (d) Find y' if $\ln(x+y) = e^y$.

Solution: Differentiating both sides we see $(\ln(x+y))' \stackrel{\text{chain}}{=} \frac{1}{x+y} (x+y)' = \frac{1+y'}{x+y}$ and $(e^y)' \stackrel{\text{chain}}{=}$ $e^y y'$ so

$$\frac{1+y'}{x+y} = e^y y'$$

which we can solve for y':

$$y' = \frac{1}{(x+y)e^y - 1}$$

- (2) Logarithm Laws
 - (a) Using the chain rule, $\frac{d(\ln(ax))}{dx} = \left| \frac{1}{ax} \cdot a = \frac{1}{x} \right|$
 - (b) Simplify $\ln(ax)$ and explain why $(\ln(ax))' = (\ln x)'$. $\ln(ax) = \ln a + \ln x$. Since $\ln a$ is constant, $(\ln(ax))' = 0 + (\ln x)' = \frac{1}{x}$ no matter what a is.
- (3) Differentiate

(a) Let
$$f(x) = \frac{x \cos x}{\sqrt{5+x}}$$
. Then $\ln f = \ln x + \ln \cos x - \frac{1}{2} \ln(x+5)$ so $(\ln f)' \stackrel{\text{sum}}{=} (\ln x)' + (\ln \cos x)' - \frac{1}{2} (\ln(x+5))' \stackrel{\text{chain}}{=} \frac{1}{x} - \frac{\sin x}{\cos x} - \frac{1}{2(x+5)}$ so $\left[\left(\frac{x \cos x}{\sqrt{5+x}} \right)' = \left(\frac{x \cos x}{\sqrt{5+x}} \right) \left(\frac{1}{x} - \frac{\sin x}{\cos x} - \frac{1}{2(x+5)} \right) \right]$.

- (b) Let $f(x) = x^x$. Then $\ln f = x \ln x$ so $(\ln f)' \stackrel{\text{pdt}}{=} 1 \ln x + x \frac{1}{x} = \ln x + 1$ and $(x^x)' = x^x (1 + \ln x)$. (c) Let $f(x) = (\ln x)^{\cos x}$. Then $\ln f = (\cos x)(\ln \ln x)$ and $(\ln f)' \stackrel{\text{pdt}}{=} -(\sin x)(\ln \ln x) + \cos x (\ln \ln x)' \stackrel{\text{chain}}{=} -\sin x \ln \ln x + \cos x \frac{1}{\ln x} (\ln x)' = -\sin x \ln \ln x + \frac{\cos x}{x \ln x}$ so $\boxed{\left(\left(\ln x\right)^{\cos x}\right)' = \left(\ln x\right)^{\cos x} \left[\frac{\cos x}{x\ln x} - \sin x\ln\ln x\right]}.$