MATH 100 - WORKSHEET 15 LOGARITHMS AND THEIR DERIVATIVES

1. Logarithms

Summary.

$$
\log _{b}\left(b^{x}\right)=b^{\log _{b} x}=x
$$

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y \quad \log _{b}\left(x^{y}\right)=y \log _{b} x
$$

$$
\log _{b} \frac{1}{x}=-\log _{b} x
$$

Review of calculations.
(1) Simplify the following logarithms
(a) $\ln \left(e^{10}\right)=$
(b) [Answer in terms of $\ln 2] \cdot \ln \left(2^{100}\right)=$
(2) A drug in a patient has a metabolic half-life of 6 hours. Suppose a patient ingests a dose D_{0} of the drug. Write a formula for the amount of drug present in the patient t hours afterward:

$$
D(t)=D_{0} \cdot 2^{-}
$$

(3) A variant on Moore's Law states that computing power doubles every 18 months. Suppose computers today can do N_{0} operations per second.
(a) Write a formula for the power of computers t years into the future:

- Computers t years from now will be able to do $N(t)$ operations per second where

$$
N(t)=
$$

(b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
(c) At what time will computers be powerful enough to complete the task in 6 months?

2. Differentiation

$$
(\ln x)^{\prime}=\frac{1}{x} \quad f^{\prime}=f(\ln f)^{\prime}
$$

Example 1. Differentiate $\ln |x|$.
(1) Differentiate
(a) $f(x)=x^{2} \ln \left(1+x^{2}\right) \cdot f^{\prime}(x)=$
(b) $g(r)=\frac{1}{\ln (\sin r)} \cdot g^{\prime}(r)=$
(c) $h(t)=\ln \left(t^{2}+3 t\right) \cdot h^{\prime}(t)=$
(d) Find y^{\prime} if $\ln (x+y)=e^{y}$
(2) Logarithm Laws
(a) Using the chain rule, $\frac{d(\ln (a x))}{\mathrm{d} x}=$
(b) Simplify $\ln (a x)$ and explain why $(\ln (a x))^{\prime}=(\ln x)^{\prime} \cdot \ln (a x)=$
(3) Differentiate using $f^{\prime}=f(\ln f)^{\prime}$.
(a) $\frac{x \cos x}{\sqrt{5+x}}$
(b) x^{x}
(c) $(\ln x)^{\cos x}$

