MATH 100 – WORKSHEET 15 LOGARITHMS AND THEIR DERIVATIVES

1. Logarithms

Summary.

$$\log_b(x^y) = \log_b x + \log_b y$$

$$\log_b(x^y) = y \log_b x$$

$$\log_b \frac{1}{x} = -\log_b x$$

Review of calculations.

- (1) Simplify the following logarithms (a) $\ln(e^{10}) =$
 - (b) [Answer in terms of $\ln 2$]. $\ln(2^{100}) =$

(2) A drug in a patient has a metabolic half-life of 6 hours. Suppose a patient ingests a dose D_0 of the

drug. Write a formula for the amount of drug present in the patient t hours afterward:

$$D(t) = D_0 \cdot 2^-$$

- (3) A variant on Moore's Law states that computing power doubles every 18 months. Suppose computers today can do N_0 operations per second.
 - (a) Write a formula for the power of computers t years into the future:
 - Computers t years from now will be able to do N(t) operations per second where

$$N(t) =$$

- (b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
- (c) At what time will computers be powerful enough to complete the task in 6 months?

Date: 10/10/2012.

2. DIFFERENTIATION

$$\boxed{(\ln x)' = \frac{1}{x}} \qquad \qquad \boxed{f' = f (\ln f)'}$$

Example 1. Differentiate $\ln |x|$.

(1) Differentiate (a) $f(x) = x^2 \ln(1 + x^2)$. f'(x) =

- (b) $g(r) = \frac{1}{\ln(\sin r)}$. g'(r) =
- (c) $h(t) = \ln(t^2 + 3t)$. h'(t) =
- (d) Find y' if $\ln(x+y) = e^y$
- (2) Logarithm Laws (a) Using the chain rule, $\frac{d(\ln(ax))}{dx} =$
 - (b) Simplify $\ln(ax)$ and explain why $(\ln(ax))' = (\ln x)'$. $\ln(ax) =$
- (3) Differentiate using $f' = f (\ln f)'$. (a) $\frac{x \cos x}{\sqrt{5+x}}$

(b) x^x

(c) $(\ln x)^{\cos x}$