MATH 100 - WORKSHEET 16 APPLICATIONS

(1) The position of a particle at time t is given by $f(t)=t \sin (\pi t)$.
(a) Find the velocity at time t, and specifically at $t=3$. $v(t)=f^{\prime}(t) \stackrel{\text { pdt }}{=} \sin (\pi t)+\pi t \cos (\pi t)$. Now $\sin (3 \pi)=\sin \pi=0$ and $\cos (3 \pi)=\cos \pi=-1$ so $v(3)=-3 \pi$
(b) When is the particle accelerating? Decelerating? At rest? $a(t)=v^{\prime}(t)=2 \pi \cos (\pi t)-\pi^{2} t \sin (\pi t)$.
(c) Find the total distance travelled by $t=5 . S=$
(2) A ball is falling from rest in air. Its height at time t is given by

$$
h(t)=H_{0}-g t_{0}\left(t+t_{0} e^{-t / t_{0}}-t_{0}\right)
$$

where H_{0} is the initial height and t_{0} is a constant.
(a) Find the velocity of the ball. $v(t)=h^{\prime}(t)=0-g t_{0}\left(1+t_{0} e^{-t / t_{0}}\left(-\frac{1}{t_{0}}\right)-0\right)=-g t_{0}\left(1-e^{-t / t_{0}}\right)$.
(b) Find the acceleration. $a(t)=v^{\prime}(t)=-g t_{9}\left(0-e^{-t / t_{0}}\left(-\frac{1}{t_{0}}\right)\right)=-g e^{-t / t_{0}}$.
(c) Find $\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty}\left(-g t_{0}\left(1-e^{-t / t_{0}}\right)\right)=-g t_{0}\left(1-\lim _{t \rightarrow \infty} e^{-t / t_{0}}\right)=-g t_{0}(1-0)=$ $-g t_{0}$.
(3) Water is filling a cylindrical container of radius $r=10 \mathrm{~cm}$. Suppose that at time t the height of the water is $\left(t+t^{2}\right) \mathrm{cm}$. How fast is the volume growing?
Solution: At time t the water forms a cylinder of radius r and height $\left(t+t^{2}\right)$ hence volume $V(t)=\pi r^{2}\left(t+t^{2}\right) \mathrm{cm}^{3}$. It follows that $V^{\prime}(t)=\pi r^{2}(1+2 t)=100 \pi(1+2 t)$.
(4) A spherical baloon is expanding, so that at the time its radius is 15 cm , the radius is growing at the rate of $1 \mathrm{~cm} / \mathrm{sec}$. How fast is the volume of the baloon growing?
Solution: $V(t)=\frac{4}{3} \pi(r(t))^{3}$ so $V^{\prime}(t)=\frac{4}{3} \pi \cdot 3(r(t))^{2} r^{\prime}(t)$. At the given time we have $r=15, r^{\prime}=1$ so $V^{\prime}(t)=4 \pi \cdot 15^{2} \cdot 1=900 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}$.
(5) A rocket is flying in space. The momentum of the rocket is given by the formula $p=m v$, where m is the mass and v is the velocity. At a time where the mass of the rocket is $m=1000 \mathrm{~kg}$ and its velocity is $v=5000 \frac{\mathrm{~m}}{\mathrm{sec}}$ the rocket is accelerating at the rate $a=20 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$ and losing mass at the rate $10 \frac{\mathrm{~kg}}{\mathrm{sec}}$. Find the rate of change of the momentum with time.
Solution: $\frac{d p}{d t} \stackrel{\text { pdt }}{=} \frac{d m}{d t} v+m \frac{d v}{d t}=(-10) 5000+1000 \cdot 20=20,000-50,000=-30,000 \frac{\mathrm{~km} \mathrm{~m}}{\mathrm{sec}}$.
(6) A metal rod of length 30 cm has total mass 800 gr . Suppose that the mass of the part of the rod between the left end and a point $x \mathrm{~cm}$ to the right has mass $\left(x^{2}-\frac{x^{3}}{270}\right)$ gr. Find the density of the rod in its middle.
Solution: The density is given by the derivative of the mass. Thus $d(x)=\left(2 x-\frac{x^{2}}{90}\right) \frac{\mathrm{gr}}{\mathrm{cm}}$. At $x=15$ this gives $d(15 \mathrm{~cm})=30-\frac{225}{90}=30-2.5=27.5$.

