MATH 100 – WORKSHEET 17 EXPONENTIAL GROWTH AND DECAY

1. EXPONENTIALS

Growth/decay described by the differential equation

$$y' = ky$$

Solution: $y = Ce^{kt}$

- (1) A pair of invasive Opossums arrives in BC in 1930. Unchecked, Opossums can triple their population annually. Assume that this in fact happens.
 - (a) At what time will there be 1000 Opossums in BC? 10,000 Opossums? Solution: Whenver t years pass expect the number of opposums to multiply by 3^t. Thus t years after 1930 expect 2 · 3^t opposums. Will have 1000 of them at a time t such that 2 · 3^t = 1000 so t = log₃ 500 = ln 500/ln 3 years after 1930. Similarly will reach 10,000 ln 5,000/ln 3 years after 1930.
 (b) Write a differential equation expressing the growth of the Opossum population with time.
 - (b) Write a differential equation expressing the growth of the Opossum population with time. Solution: $y' = (\ln 3)y$.
- (2) A radioactive sample decays according to the law

$$\frac{dm}{dt} = -km$$

- (a) Suppose that one-quarter of the sample remains after 10 hours. What is the half-life? **Solution**: Since $\frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2}$ two halvings have occured in 10 hours, so the half-life is 5 hours. Alternatively, suppose $m = Ce^{-kt}$ so that $m(0) = Ce^0 = C$. We know that $m(10) = \frac{1}{4}m(0) = \frac{1}{4}C$ so $Ce^{-10k} = \frac{1}{4}C$ means $-10k = \ln \frac{1}{4}$ and hence $k = \frac{1}{10}\ln 4 = \frac{1}{5}\ln 2$. Now the time $t_{1/2}$ such that $m(t_{1/2}) = \frac{1}{2}C$ will satisfy $Ce^{-(\frac{1}{5}\ln 2)t_{1/2}} = \frac{1}{2}C$ so $-\frac{1}{5}\ln 2 \cdot t_{1/2} = -\ln 2$. Again we get $t_{1/2} = 5$.
- (b) A 100-gram sample is left unattended for three days. How much of it remains? Solution: We have a halving every 5 hours, so ⁷²/₅ halvings over three days. The remaining mass is them 100 · 2^{-⁷²/₅} grams. Alternatively we could use the formula: m(72) = 100 · e^{-¹/₅ ln ^{2·72} = 100 · (e^{ln 2})^{72/5} = 100 · 2^{⁷²/₅}.}
- (3) Euler found that the tension in a wire wound around a cylinder increases according to the equation

$$\frac{dT}{d\alpha} = fT$$

where μ is the coefficient of friction and α is the angle around the cylinder.

(a) When mooring a large ship a rope is wound around a bollard. It is found that when looping the rope once around the bollard, the ratio of tensions at the two ends of the rope is 20. What is the coefficient of friction?

Solution: The solution to the equation is $T(\alpha) = T(0)e^{f\alpha}$ and we are told that $T(2\pi) = 20T(0)$ so that $e^{2\pi f} = 20$ and $f = \frac{1}{2\pi} \log 20 \approx 0.477$.

(b) The rope is wound 3.5 times around the bollard. What is the force gain? **Solution**: We gain a factor of 20 every turn, hence a factor of $(20)^{3.5} \approx 35,800$ after 3.5 turns. Akternatively plug in the formula: the gain is $e^{f \cdot 3.5 \cdot 2\pi} = e^{3.5 \cdot \log 20} = 20^{3.5}$.

Date: 15/10/2012.

2. NEWTON'S LAW OF COOLING

Fact 1. When a body of temperature T is placed in an environment of temperature T_{env} , the rate of change of T is negatively proportional to the temperature difference $T - T_0$. In other words, there is k such that

$$T' = -k(T - T_{env})$$

Solving the equation. The key idea is changing variables to the *temperature difference*. Let $y = T - T_{env}$. Then

$$\frac{dy}{dt} = \frac{dT}{dt} - 0 = -kg$$

 $y(t) = Ce^{-kt}.$

so there is C for which

Solving for T we get:

$$T(t) = T_{\rm env} + Ce^{-kt}$$

Setting t = 0 we find $T(0) = T_{env} + C$ so $C = T(0) - T_{env}$ and

$$T(t) = T_{env} + (T(0) - T_{env})e^{-\kappa t}$$
.

Corollary 2. $\lim_{t\to\infty} y(t) = T_0$.

Example (Final Exam, 2010). When an apple is taken from a refrigerator, its temperature is $3^{\circ}C$. After 30 minutes in a $19^{\circ}C$ room its temperature is $11^{\circ}C$.

(1) Write the differential equation satisfied by the temperature T(t) of the apple.

Solution: The equation is T'(t) = k(T(t) - 19) and we need to find k. Changing variables to y = T(t) - 19 we see that y' = ky so $y(t) = Ce^{kt}$ for some C. Since $y(0) = Ce^0 = C$, we have C = 3 - 19 = -16. Now we are given that $-8 = 11 - 19 = y(30) = (-16)e^{30k}$ so $e^{30k} = \frac{1}{2}$. It follows that $k = \frac{1}{30} \ln \frac{1}{2}$ and the equation is

$$T'(t) = -\frac{\ln 2}{30} (T(t) - 19) .$$

(2) Find the temperature of the apple 90 minutes after it is taken from the refrigerator, expressed as an integer number of degrees Celsius.

Solution: We know that y(t) dropped by a factor of 2 after 30 minutes, so over 90 minutes we will see 3 drops of 2, i.e. $y(90) = \frac{1}{8}y(0) = -\frac{16}{8} = -2$. It follows that after 90 minutes the temperature will be T(90) = 19 + y(90) = 17 degrees celsius.

(3) Determine the time when the temperature of the apple is $16^{\circ}C$.

Solution: At that time we have y(t) = 19 - 16 = -3 and also $y(t) = -16e^{kt}$. It follows that

$$e^{kt} = \frac{3}{16}$$
 so $t = \frac{\ln(3/10)}{k} = 30 \frac{\ln(10/3)}{\ln 2}$ minutes.