MATH 100 – WORKSHEET 22 TAYLOR POLYNOMIALS

1. Taylor expansion of e^x

Let $f(x) = e^x$

(1) Find $f(0), f'(0), f^{(2)}(0), \cdots$

Solution: $f^{(k)}(x) = e^x$ for all k, so $f^{(k)}(0) = e^0 = 1$ for all k.

- (2) Find a simple polynomial $T_0(x)$ such that $\overline{T_0(0)} = f(0)$. Solution: $\overline{T_0(x)} = 1$ works.
- (3) Find a simple polynomial $T_1(x)$ such that $T_1(0) = f(0)$ and $T'_1(0) = f'(0)$. **Solution**: We try something like $T_1(x) = 1 + c_1 x$ so we still have $T_1(0) = 1$. Differentiating we see that $(1 + c_1 x)' = c_1$ and since f'(0) = 1 we need $c_1 = 1$ so $T_1(x) = 1 + x$.
- (4) Find a simple polynomial $T_2(x)$ such that $T_2(0) = f(0)$, $T'_2(0) = f'(0)$ and $T_2^{(2)}(0) = f^{(2)}(0)$. **Solution**: Let's try $T_2(x) = 1 + x + c_2 x^2$. Then $T_2(0) = 1$, $T'_2 = 1 + c_2 x$ so still $T'_2(x) = 1 = f'(0)$.

Finally, $T_2'' = 2c_2$ and we need to match f''(0) = 1 so we must take $c_2 = \frac{1}{2}$, i.e. $T_2(x) = 1 + x + \frac{x^2}{2}$

(5) Find a simple polynomial $T_3(x)$ such that $T_3^{(k)}(0) = f^{(k)}(0)$ for $0 \le k \le 3$. **Solution**: We want to add a term like $c_3 x^3$. Differentiating this three times we get $6c_3$ and this needs to equal 1, so we take $c_3 = \frac{1}{6}$ and $T_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$.

2. Taylor expansion of \sqrt{x} about x = 4

Let $f(x) = \sqrt{x}$

- (1) Find a simple polynomial $T_0(x)$ such that $T_0(4) = f(4)$. Solution: $T_0(x) = 2$.
- (2) Find a simple polynomial $T_1(x)$ such that $T_1(4) = f(4)$ and $T'_1(4) = f'(4)$. **Solution**: $f'(x) = \frac{1}{2\sqrt{x}}$ so $f'(4) = \frac{1}{4}$. We will try $T_1(x) = 2 + c_1(x-4)$ so that $T_1(4) = 2$ still

holds. The derivative of this is c_1 so we want $c_1 = \frac{1}{4}$ and $T_1(x) = 2 + \frac{1}{4}(x-4)$

- (3) Find a simple polynomial $T_2(x)$ such that $T_2(4) = f(0)$, $T'_2(4) = f'(4)$ and $T_2^{(2)}(4) = f^{(2)}(4)$. **Solution**: $f''(x) = -\frac{1}{4x^{3/2}}$, $f''(4) = -\frac{1}{32}$. We'll take $T_2(x) = 2 + \frac{1}{4}(x-4) + c_2(x-4)^2$. The second derivative is then $2c_2$ so we need $c_2 = -\frac{1}{64}$ and $T_0(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2$.
- (4) Find a simple polynomial $T_3(x)$ such that $T_3^{(k)}(4) = f^{(k)}(4)$ for $0 \le k \le 3$. **Solution**: $f^{(3)}(x) = \frac{3}{8}x^{-5/2}$ so $f^{(3)}(4) = \frac{3}{256}$. We need to add a term $c_3(x-4)^3$ whose third deriva-

tive is
$$6c_3$$
, so we need to take $c_3 = \frac{1}{6} \cdot \frac{3}{256} = \frac{1}{512}$ so $T_3(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3$

Date: 24/10/2012.

The *n*th order Taylor expansion of f(x) about x = a is the polynomial $T_n(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n$

where $c_k = \frac{f^{(k)}(a)}{k!}$.

(1) Find the 4th order expansion of $\frac{1}{1-x}$.

Solution: The first 4 derivatives and corresponding values are $\frac{\left| f^{(0)}(x) = (1-x)^{-1} \right| f^{(1)}(x) = (1-x)^{-2}}{f^{(0)}(0) = 1}$

so the expansion is

$$\begin{array}{rcl} \displaystyle \frac{1}{1-x} &\approx& \displaystyle 1+\frac{1}{1}x+\frac{2}{2!}x^2+\frac{6}{3!}x^3+\frac{24}{4!}x^4\\ &=& \displaystyle 1+x+x^2+x^3+x^4\,. \end{array}$$

(2) Find the *n*th order expansion of $\sin x$. Solution: See course notes on Taylor Series, pages 4-5.

4. New from old

(1) Find the 3rd order Taylor expansion of $\sqrt{4+x}$ about x = 0. Solution: We know that $\sqrt{u} \approx 2 + \frac{1}{4}(u-4) - \frac{1}{64}(u-4)^2 + \frac{1}{512}(u-4)^3$ for u close to 4. Plugging in u = 4 + x we get $\sqrt{4+x} \approx 2 + \frac{1}{4}x - \frac{1}{64}x^2 + \frac{1}{512}x^3$.

(2) Find the 3rd order Taylor expansion of $\sqrt{4+x} + \frac{1}{1-x}$ about x = 0. Solution: We add the answers to two previous problems to get

$$\sqrt{4+x} + \frac{1}{1-x} \approx \left(2 + \frac{1}{4}x - \frac{1}{64}x^2 + \frac{1}{512}x^3\right) + \left(1 + x + x^2 + x^3\right)$$
$$= \frac{3 + 1\frac{1}{4}x + \frac{63}{64}x^2 + 1\frac{1}{512}x^3}{3}.$$

(3) Find the 8th order Taylor expansion of $e^{x^2} + \sin(5x)$ **Solution:** We know that $e^u \approx 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{24}$ where further terms will have higher powers of u. Plugging in $u = x^2$ we get $e^{x^2} \approx 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \frac{x^8}{24}$ where further terms have heigher powers of x. We also know that $\sin u \approx u - \frac{u^3}{3!} + \frac{u^5}{5!} - \frac{u^7}{7!}$ up to 8th order. Plugging in u = 5x we get $\sin 5x \approx 5x - \frac{125}{3!}x^3 + \frac{5^5}{5!}x^5 - \frac{5^7}{7!}x^7$. Adding the two we get $\boxed{e^{x^2} + \sin(5x) \approx 1 + 5x + x^2 - \frac{125}{6}x^3 + \frac{1}{2}x^4 + \frac{625}{24}x^5 + \frac{1}{6}x^6 - \frac{5^7}{7!}x^7 + \frac{1}{24}x^8}.$

(4) Find the 3rd order Taylor expansion of
$$e^{\sin x} \cdot \cos(\sqrt{x})$$

Find the 3rd order Taylor expansion of $e^{\sin x} \cdot \cos(\sqrt{x})$. Solution: To 3rd order we have $\sin x \approx x - \frac{x^3}{6}$, and $e^u \approx 1 + u + \frac{u^2}{2} + \frac{u^3}{6}$. Plugging in $u \approx x - \frac{x^3}{6}$ we get to third order:

$$e^{\sin x} \approx 1 + (x - \frac{x^3}{6}) + \frac{1}{2}(x - \frac{x^3}{6})^2 + \frac{1}{6}(x - \frac{x^3}{6})^3$$

Opening the parantheses any product of terms involving an x^3 times anything will exceed 3rd order so we can drop all terms except:

$$e^{\sin x} \approx 1 + x - \frac{x^3}{6} + \frac{1}{2}x^2 + \frac{1}{6}x^3$$

= $1 + x + \frac{1}{2}x^2$.

Similarly we know that $\cos(u) \approx 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \frac{u^6}{6!}$ plus terms of order 8 or more. Plugging in $u = \sqrt{x}$ we get

$$\cos\sqrt{x} \approx 1 - \frac{x}{2} + \frac{x^2}{24} - \frac{x^3}{720}$$

plus terms of order 4 or more, so we found the 3rd order expansion. We now multiply:

$$e^{\sin x} \cdot \cos(\sqrt{x}) \approx \left(1 + x + \frac{1}{2}x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{24} - \frac{x^3}{720}\right)$$
$$\approx 1 + \left(-\frac{1}{2} + 1\right) x + \left(\frac{1}{24} - \frac{1}{2} + \frac{1}{2}\right) x^2 + \left(-\frac{1}{720} + \frac{1}{24} - \frac{1}{4}\right) x^3$$
$$= \boxed{1 - \frac{1}{2}x + \frac{1}{24}x^2 - \frac{151}{720}x^3}$$

where we dropped terms of order greater than 3 in the product.