MATH 100 - WORKSHEET 22
 TAYLOR POLYNOMIALS

1. TAylor expansion of e^{x}

Let $f(x)=e^{x}$
(1) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$

Solution: $f^{(k)}(x)=e^{x}$ for all k, so $f^{(k)}(0)=e^{0}=1$ for all k.
(2) Find a simple polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.

Solution: $T_{0}(x)=1$ works.
(3) Find a simple polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.

Solution: We try something like $T_{1}(x)=1+c_{1} x$ so we still have $T_{1}(0)=1$. Differentiating we see that $\left(1+c_{1} x\right)^{\prime}=c_{1}$ and since $f^{\prime}(0)=1$ we need $c_{1}=1$ so $T_{1}(x)=1+x$.
(4) Find a simple polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.

Solution: Let's try $T_{2}(x)=1+x+c_{2} x^{2}$. Then $T_{2}(0)=1, T_{2}^{\prime}=1+c_{2} x$ so still $T_{2}^{\prime}(x)=1=f^{\prime}(0)$. Finally, $T_{2}^{\prime \prime}=2 c_{2}$ and we need to match $f^{\prime \prime}(0)=1$ so we must take $c_{2}=\frac{1}{2}$, i.e. $T_{2}(x)=1+x+\frac{x^{2}}{2}$
(5) Find a simple polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.

Solution: We want to add a term like $c_{3} x^{3}$. Differentiating this three times we get $6 c_{3}$ and this needs to equal 1 , so we take $c_{3}=\frac{1}{6}$ and $T_{3}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$.

2. TAYLOR EXPANSION OF \sqrt{x} about $x=4$

Let $f(x)=\sqrt{x}$
(1) Find a simple polynomial $T_{0}(x)$ such that $T_{0}(4)=f(4)$.

Solution: $T_{0}(x)=2$.
(2) Find a simple polynomial $T_{1}(x)$ such that $T_{1}(4)=f(4)$ and $T_{1}^{\prime}(4)=f^{\prime}(4)$.

Solution: $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ so $f^{\prime}(4)=\frac{1}{4}$. We will try $T_{1}(x)=2+c_{1}(x-4)$ so that $T_{1}(4)=2$ still holds. The derivative of this is c_{1} so we want $c_{1}=\frac{1}{4}$ and $T_{1}(x)=2+\frac{1}{4}(x-4)$.
(3) Find a simple polynomial $T_{2}(x)$ such that $T_{2}(4)=f(0), T_{2}^{\prime}(4)=f^{\prime}(4)$ and $T_{2}^{(2)}(4)=f^{(2)}(4)$.

Solution: $f^{\prime \prime}(x)=-\frac{1}{4 x^{3 / 2}}, f^{\prime \prime}(4)=-\frac{1}{32}$. We'll take $T_{2}(x)=2+\frac{1}{4}(x-4)+c_{2}(x-4)^{2}$. The second derivative is then $2 c_{2}$ so we need $c_{2}=-\frac{1}{64}$ and $T_{0}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}$.
(4) Find a simple polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(4)=f^{(k)}(4)$ for $0 \leq k \leq 3$.

Solution: $f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}$ so $f^{(3)}(4)=\frac{3}{256}$. We need to add a term $c_{3}(x-4)^{3}$ whose third derivative is $6 c_{3}$, so we need to take $c_{3}=\frac{1}{6} \cdot \frac{3}{256}=\frac{1}{512}$ so $T_{3}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}$.

3. General formula

The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

where $c_{k}=\frac{f^{(k)}(a)}{k!}$.
(1) Find the 4 th order expansion of $\frac{1}{1-x}$.

Solution: The first 4 derivatives and corresponding values are | $f^{(0)}(x)=(1-x)^{-1}$ | $f^{(1)}(x)=(1-x)^{-2}$ | $f^{(2)}$ |
| :---: | :---: | :---: |
| $f^{(0)}(0)=1$ | $f^{(1)}(0)=1$ | | so the expansion is

$$
\begin{aligned}
\frac{1}{1-x} & \approx 1+\frac{1}{1} x+\frac{2}{2!} x^{2}+\frac{6}{3!} x^{3}+\frac{24}{4!} x^{4} \\
& =1+x+x^{2}+x^{3}+x^{4}
\end{aligned}
$$

(2) Find the nth order expansion of $\sin x$.

Solution: See course notes on Taylor Series, pages 4-5.

4. New from old

(1) Find the 3rd order Taylor expansion of $\sqrt{4+x}$ about $x=0$.

Solution: We know that $\sqrt{u} \approx 2+\frac{1}{4}(u-4)-\frac{1}{64}(u-4)^{2}+\frac{1}{512}(u-4)^{3}$ for u close to 4 . Plugging in $u=4+x$ we get $\sqrt{4+x} \approx 2+\frac{1}{4} x-\frac{1}{64} x^{2}+\frac{1}{512} x^{3}$.
(2) Find the 3rd order Taylor expansion of $\sqrt{4+x}+\frac{1}{1-x}$ about $x=0$.

Solution: We add the answers to two previous problems to get

$$
\begin{aligned}
\sqrt{4+x}+\frac{1}{1-x} & \approx\left(2+\frac{1}{4} x-\frac{1}{64} x^{2}+\frac{1}{512} x^{3}\right)+\left(1+x+x^{2}+x^{3}\right) \\
& =3+1 \frac{1}{4} x+\frac{63}{64} x^{2}+1 \frac{1}{512} x^{3}
\end{aligned}
$$

(3) Find the 8 th order Taylor expansion of $e^{x^{2}}+\sin (5 x)$

Solution: We know that $e^{u} \approx 1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}+\frac{u^{4}}{24}$ where further terms will have higher powers of u. Plugging in $u=x^{2}$ we get $e^{x^{2}} \approx 1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}$ where further terms have heigher powers of x. We also know that $\sin u \approx u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\frac{u^{7}}{7!}$ up to 8th order. Plugging in $u=5 x$ we get $\sin 5 x \approx 5 x-\frac{125}{3!} x^{3}+\frac{5^{5}}{5!} x^{5}-\frac{5^{7}}{7!} x^{7}$. Adding the two we get

$$
e^{x^{2}}+\sin (5 x) \approx 1+5 x+x^{2}-\frac{125}{6} x^{3}+\frac{1}{2} x^{4}+\frac{625}{24} x^{5}+\frac{1}{6} x^{6}-\frac{5^{7}}{7!} x^{7}+\frac{1}{24} x^{8} .
$$

(4) Find the 3 rd order Taylor expansion of $e^{\sin x} \cdot \cos (\sqrt{x})$.

Solution: To 3 rd order we have $\sin x \approx x-\frac{x^{3}}{6}$, and $e^{u} \approx 1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}$. Plugging in $u \approx x-\frac{x^{3}}{6}$ we get to third order:

$$
e^{\sin x} \approx 1+\left(x-\frac{x^{3}}{6}\right)+\frac{1}{2}\left(x-\frac{x^{3}}{6}\right)^{2}+\frac{1}{6}\left(x-\frac{x^{3}}{6}\right)^{3}
$$

Opening the parantheses any product of terms involving an x^{3} times anything will exceed 3rd order so we can drop all terms except:

$$
\begin{aligned}
e^{\sin x} & \approx 1+x-\frac{x^{3}}{6}+\frac{1}{2} x^{2}+\frac{1}{6} x^{3} \\
& =1+x+\frac{1}{2} x^{2}
\end{aligned}
$$

Similarly we know that $\cos (u) \approx 1-\frac{u^{2}}{2!}+\frac{u^{4}}{4!}-\frac{u^{6}}{6!}$ plus terms of order 8 or more. Plugging in $u=\sqrt{x}$ we get

$$
\cos \sqrt{x} \approx 1-\frac{x}{2}+\frac{x^{2}}{24}-\frac{x^{3}}{720}
$$

plus terms of order 4 or more, so we found the 3 rd order expansion. We now multiply:

$$
\begin{aligned}
e^{\sin x} \cdot \cos (\sqrt{x}) & \approx\left(1+x+\frac{1}{2} x^{2}\right)\left(1-\frac{x}{2}+\frac{x^{2}}{24}-\frac{x^{3}}{720}\right) \\
& \approx 1+\left(-\frac{1}{2}+1\right) x+\left(\frac{1}{24}-\frac{1}{2}+\frac{1}{2}\right) x^{2}+\left(-\frac{1}{720}+\frac{1}{24}-\frac{1}{4}\right) x^{3} \\
& =1-\frac{1}{2} x+\frac{1}{24} x^{2}-\frac{151}{720} x^{3}
\end{aligned}
$$

where we dropped terms of order greater than 3 in the product.

