MATH 100 - WORKSHEET 22
 TAYLOR POLYNOMIALS

1. Taylor expansion of e^{x}

Let $f(x)=e^{x}$
(1) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(2) Find a simple polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(3) Find a simple polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(4) Find a simple polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(5) Find a simple polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.

2. TAYLOR EXPANSION OF \sqrt{x} about $x=4$

Let $f(x)=\sqrt{x}$
(1) Find a simple polynomial $T_{0}(x)$ such that $T_{0}(4)=f(4)$.
(2) Find a simple polynomial $T_{1}(x)$ such that $T_{1}(4)=f(4)$ and $T_{1}^{\prime}(4)=f^{\prime}(4)$.
(3) Find a simple polynomial $T_{2}(x)$ such that $T_{2}(4)=f(0), T_{2}^{\prime}(4)=f^{\prime}(4)$ and $T_{2}^{(2)}(4)=f^{(2)}(4)$.
(4) Find a simple polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(4)=f^{(k)}(4)$ for $0 \leq k \leq 3$.
3. General formula

The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

where $c_{k}=\frac{f^{(k)}(a)}{k!}$.
(1) Find the 4 th order expansion of $\frac{1}{1-x}$
(2) Find the nth order expansion of $\sin x$.

4. New From old

(1) Find the 3 rd order Taylor expansion of $\sqrt{4+x}$ about $x=0$.
(2) Find the 3rd order Taylor expansion of $\sqrt{4+x}+\frac{1}{1-x}$ about $x=0$.
(3) Find the 8th order Taylor expansion of $e^{x^{2}}+\sin (5 x)$
(4) Fidn the 3 rd order Taylor expansion of $e^{\sin x} \cdot \cos (\sqrt{x})$.

