MATH 100 - WORKSHEET 22 TAYLOR POLYNOMIALS

1. Taylor expansion of e^x

Let $f(x) = e^x$

- (1) Find $f(0), f'(0), f^{(2)}(0), \cdots$
- (2) Find a simple polynomial $T_0(x)$ such that $T_0(0) = f(0)$.
- (3) Find a simple polynomial $T_1(x)$ such that $T_1(0) = f(0)$ and $T'_1(0) = f'(0)$.
- (4) Find a simple polynomial $T_2(x)$ such that $T_2(0) = f(0)$, $T'_2(0) = f'(0)$ and $T_2^{(2)}(0) = f^{(2)}(0)$. (5) Find a simple polynomial $T_3(x)$ such that $T_3^{(k)}(0) = f^{(k)}(0)$ for $0 \le k \le 3$.

2. Taylor expansion of \sqrt{x} about x = 4

Let $f(x) = \sqrt{x}$

- (1) Find a simple polynomial $T_0(x)$ such that $T_0(4) = f(4)$.
- (2) Find a simple polynomial $T_1(x)$ such that $T_1(4) = f(4)$ and $T'_1(4) = f'(4)$.
- (3) Find a simple polynomial $T_2(x)$ such that $T_2(4) = f(0)$, $T'_2(4) = f'(4)$ and $T^{(2)}_2(4) = f^{(2)}(4)$. (4) Find a simple polynomial $T_3(x)$ such that $T^{(k)}_3(4) = f^{(k)}(4)$ for $0 \le k \le 3$.

Date: 24/10/2012.

3. GENERAL FORMULA

The *n*th order Taylor expansion of f(x) about x = a is the polynomial $T_n(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n$ where $c_k = \frac{f^{(k)}(a)}{k!}$.

(1) Find the 4th order expansion of $\frac{1}{1-x}$

(2) Find the *n*th order expansion of $\sin x$.

4. New from old

(1) Find the 3rd order Taylor expansion of $\sqrt{4+x}$ about x = 0.

(2) Find the 3rd order Taylor expansion of $\sqrt{4+x} + \frac{1}{1-x}$ about x = 0.

(3) Find the 8th order Taylor expansion of $e^{x^2} + \sin(5x)$

(4) Fidn the 3rd order Taylor expansion of $e^{\sin x} \cdot \cos(\sqrt{x})$.