MATH 100 - WORKSHEET 22 ESTIMATES ON TAYLOR EXPANSIONS

The Taylor expansion of $f(x)$ about $x=a$ is

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Then there is c between a and x such that

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

Moral: The remainder looks like the next term except the derivative is evaluated at the point c.

1. LINEAR APPROXIMATION OF $(1001)^{1 / 3}$

(1) Estimate $(1001)^{1 / 3}$ using a linear approximation. Express your answer as a rational number.
(2) Write down the remainder term as it applies to this case. In which range does c vary?
(3) Give an upper bound for the error in your approximation.

Solution. Let $f(x)=x^{1 / 3}$ so that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$ and $f^{\prime \prime}(x)=-\frac{2}{9} x^{-5 / 3}$.
(1) We have $f(1000)=10, f^{\prime}(1000)=\frac{1}{300}$ so $f(1001) \approx f(1000)+(1001-1000) f^{\prime}(1000)=10+\frac{1}{300}=$ $10 \frac{1}{300}$.
(2) We need $R_{1}(x)=\frac{f^{\prime \prime}(c)}{2!}(1001-1000)^{2}=-\frac{1}{9} c^{-5 / 3}$ where c varies between 1000,1001 .
(3) We see that R_{1} is negative, and that its magnitude is decreasing in c, so $\triangle\left|-\frac{1}{9} c^{-5 / 3}\right| \leq \frac{1}{9}(1000)^{5 / 3}=\frac{1}{9 \cdot 10^{5}}$.

2. TAYLOR EXPANSION OF e^{x}

Let $f(x)=e^{x}$ and recall that the Maclaurin expansion is $T_{n}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$.
(1) Estimate e using a second order Taylor expansion. Write your answer as a rational number.
(2) Estimate the error.
(3) Repeat for $\frac{1}{e}$.

Solution. Here we use $f(x)=e^{x}$ and all derivatives take the same form. We are expanding about $a=0$.
(1) We have $T_{2}(x)=1+x+\frac{x^{2}}{2}$ so $e=f(1) \approx 1+1+\frac{1}{2}=2 \frac{1}{2}$.
(2) We have $R_{2}(1)=\frac{f^{(3)}(c)}{3!} 1^{3}=\frac{e^{c}}{6}$ for some $0<c<1$. We see that $R_{2}(1)>0$ and since e^{c} is increasing here, that $0<R_{2}(1)<\frac{e^{1}}{6}=\frac{e}{6}$, which is at most $\frac{1}{2}$ since $e<3$ (see below).
(3) First, $\frac{1}{e}=e^{-1}=f(-1) \approx T_{2}(-1)=1+(-1)+\frac{(-1)^{2}}{2}=\frac{1}{2}$. Second, the error has the form $R_{2}(-1)=\frac{e^{c}}{3!}(-1)^{3}=-\frac{e^{c}}{6}$ for some $-1<c<0$. We see that $R_{2}(-1)<0$ and that the magnitue is at most that when $c=0$ so $0>R_{2}(-1)>-\frac{1}{6}$.
Remark. We get that $\frac{1}{2}-\frac{1}{6}<\frac{1}{e}<\frac{1}{2}$. Since $\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$ this reads $\frac{1}{3}<\frac{1}{e}<\frac{1}{2}$ that is $2<e<3$.

3. Taylor expansion of \sqrt{x} about $x=4$

Let $f(x)=\sqrt{x}$ and recall that about $a=4$ we have $T_{3}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}$ and that $f^{(3)}(x)=\frac{3}{8 x^{5 / 2}}$.
(1) Approximate $\sqrt{5}$ using a 2 nd order expansion.
(2) Bound the error in your expansion.
(3) Approximate $\sqrt{5}$ using a 3rd order expansion.
(4) Bound the error in your approximation.

Solution.
(1) $T_{2}(5)=2+\frac{1}{4}(1)-\frac{1}{64}(1)^{2}=2 \frac{15}{64}$.
(2) $R_{2}(5)=\frac{1}{6} \cdot \frac{3}{8} c^{-5 / 2}(1)^{3}$ for $4<c<5$. This is positive and at most $\frac{1}{6} \frac{3}{8}(4)^{-5 / 2}(1)$ since $c^{-5 / 2}$ is decreasing. We get that $0<R_{2}(5)<\frac{1}{512}$.
(3) $T_{3}(5)=T_{2}(5)+\frac{1}{512}(1)^{3}=2 \frac{121}{512}$.
(4) We have $f^{(4)}(x)=-\frac{5}{2} \frac{3}{8} x^{-7 / 2}$ and hence $R_{3}(5)=-\frac{15}{16} \frac{c^{-7 / 2}}{4!}(5-4)^{4}=-\frac{5}{128} c^{-7 / 2}$ for some $4<c<5$. It follows that $R_{3}(5)<0$ and (since $c^{-7 / 2}$ is decreasing in c) that $\left|R_{3}(5)\right|<\frac{5}{128} 4^{-7 / 2}=\frac{5}{2^{14}}$.

