MATH 100 - WORKSHEET 22 ESTIMATES ON TAYLOR EXPANSIONS

The Taylor expansion of $f(x)$ about $x=a$ is

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Then there is c between a and x such that

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

Moral: The remainder looks like the next term except the derivative is evaluated at the point c.

1. LINEAR APPROXIMATION OF $(1001)^{1 / 3}$
(1) Estimate $(1001)^{1 / 3}$ using a linear approximation. Express your answer as a rational number.
(2) Write down the remainder term as it applies to this case. In which range does c vary?
(3) Give an upper bound for the magnitude of the error in your approximation. What is the sign?

2. TAylor expansion of e^{x}

Let $f(x)=e^{x}$ and recall that the Maclaurin expansion is $T_{n}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$.
(1) Estimate e using a second order Taylor expansion. Write your answer as a rational number.
(2) Estimate the error.
(3) Repeat for $\frac{1}{e}$.

3. Taylor expansion of \sqrt{x} about $x=4$

Let $f(x)=\sqrt{x}$ and recall that about $a=4$ we have $T_{3}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}$ and that $f^{(3)}(x)=\frac{3}{8 x^{5 / 2}}$.
(1) Approximate $\sqrt{5}$ using a 2 nd order expansion.
(2) Bound the error in your expansion.
(3) Approximate $\sqrt{5}$ using a 3rd order expansion.
(4) Bound the error in your approximation.

