MATH 100 - WORKSHEET 22 ESTIMATES ON TAYLOR EXPANSIONS

The Taylor expansion of f(x) about x = a is

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Then there is c between a and x such that

$$R_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

Moral: The remainder looks like the next term except the derivative is evaluated at the point <u>c.</u>

1. LINEAR APPROXIMATION OF (1001)^{1/3}

(1) Estimate $(1001)^{1/3}$ using a linear approximation. Express your answer as a rational number.

(2) Write down the remainder term as it applies to this case. In which range does c vary?

(3) Give an upper bound for the magnitude of the error in your approximation. What is the sign?

2. Taylor expansion of e^x

Let $f(x) = e^x$ and recall that the Maclaurin expansion is $T_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$. (1) Estimate *e* using a second order Taylor expansion. Write your answer as a rational number.

(2) Estimate the error.

(3) Repeat for $\frac{1}{e}$.

Date: 24/10/2012.

3. Taylor expansion of \sqrt{x} about x = 4

Let $f(x) = \sqrt{x}$ and recall that about a = 4 we have $T_3(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3$ and that $f^{(3)}(x) = \frac{3}{8x^{5/2}}$.

- (1) Approximate √5 using a 2nd order expansion.
 (2) Bound the error in your expansion.
- (3) Approximate $\sqrt{5}$ using a 3rd order expansion.
- (4) Bound the error in your approximation.