MATH 100 - WORKSHEET 25
 MINIMA AND MAXIMA

1. Minima and Maxima by hand

(1) Find the absolute maximum and minimum values of $f(x)=|x|$ on the interval $[-3,5]$.
(2) Find the absolute maximum and minimum of $f(x)=\sqrt{x}$ on [0,5].
(3) Read off local maxima and minima from a posted graph.

2. Local minima and derivatives

Theorem. (Fermat) If f is defined and differentiable near c (on both sides!) and has a local minimum at c then $f^{\prime}(c)=0$.

- To find absolute maximum/minimum of a continuous function f defined on $[a, b]$:
- Evaluate $f(c)$ at any c such that $f^{\prime}(c)=0$.
- Evaluate $f(c)$ at any c such that $f^{\prime}(c)$ may not exist.
- Evaluate $f(a), f(b)$
- Choose largest, smallest value
(1) Show that $f(x)=(x-1)^{4}+7$ attains its absolute minimum at $x=1$.
(2) Show that $f(x)=(x-1)^{3}+7$ has $f^{\prime}(1)=0$ but no local minimum or maximum there.
(3) (Midterm, 2010) Find the maximum value of $x \sqrt{1-\frac{3}{4} x^{2}}$ on the interval $[0,1]$.
(4) (Final, 2011) Find the critical numbres of $f(x)=6 x^{1 / 5}+x^{6 / 5}$.
(5) (Final, 2007) Let $f(x)=x \sqrt{3-x}$.
(a) Find the domain of f.
(b) Determine the x-coordinates of any local maxima or minima of f.

