MATH 100 - WORKSHEET 26 MINIMA AND MAXIMA, MVT

1. More Minima and Maxima

(1) Find the critical numbers of $f(x)=\left\{\begin{array}{ll}x^{3}-6 x^{2}+3 x & x \leq 3 \\ \sin (2 \pi x)-18 & x \geq 3\end{array}\right.$.
(2) Find the absolute minimum and maximum of $g(x)=x e^{-x^{2} / 8}$ on
(a) $[-1,4]$
(b) $[0, \infty)$
(3) Show that the function $3 x^{3}+2 x-1+\sin x$ has no local maxima or minima.

2. The Mean Value Theorem

Theorem. Let f be defined differentiable on $[a, b]$. Then there is $a<c<b$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$. Equivalently, for any x there is c between a, x so that $f(x)=f(a)+f^{\prime}(c)(x-a)$.
(1) Let $f(x)=e^{x}$ on the interval $[0,1]$. Find all values of c so that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
(2) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$
(3) Suppose that $f^{\prime}(x)>0$ for all x. Show that $f(b)>f(a)$ for all $b>a$. (Hint: consider the sign of $\left.\frac{f(b)-f(a)}{b-a}\right)$.
(4) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero.

Corollary (Monotone function test). Let f be a function such that f^{\prime} exists and is continuous on $[a, b]$. Suppose that $f^{\prime}(x) \neq 0$ for $a<x<b$. Then f has an inverse function on this interval.

