MATH 100 – NOTES 28 THE SHAPE OF THE GRAPH

1. Tools

Let f be differentiable as needed on (a, b).

Fact (First derivative). (1) If f'(x) > 0 for all $x \in (a, b)$ then f is strictly increasing there. (2) If f'(x) < 0 for all $x \in (a, b)$ then f is strictly decreasing there.

Every change involves a critical point (either f' is continuous and vanishes, or f' is discontinuous).

Fact (Second derivative). (1) If f''(x) > 0 for all $x \in (a, b)$ then f is <u>concave up</u> there. (2) If f''(x) < 0 for all $x \in (a, b)$ then f is concave down there.

Definition 1. A point where change from concave up to concave down or vice versa occurs is called an *inflection point*.

Theorem. (Tests for minima and maxima) Let $x_0 \in (a, b)$ be a critical number for f.

- (1) Either of the following is sufficient to show that f has a local minimum at x₀:
 (a) f''(x₀) > 0 or;
 - (b) f'(x) is negative to the left of x_0 , positive to its right.
- (2) Either of the following shows that f has a local maximum at x_0 :
 - (a) $f''(x_0) < 0$ or;
 - (b) f'(x) is positive to the left of x_0 , negative to its right.

Date: 7/11/2012.

2. Examples

2.1.
$$f(x) = \frac{x^2 = 9}{x^2 + 3}$$
.
• $f'(x) \stackrel{\text{quot}}{=} \frac{2x(x^2 + 3) - 2x(x^2 - 9)}{(x^2 + 3)^2} = 24 \frac{x}{(x^2 + 3)^2}$.
• $f''(x) = 24 \frac{1}{(x^2 + 3)^2} - 24 \frac{x \cdot 2 \cdot 2x}{(x^2 + 3)^3} = 24 \frac{(x^3 + 3) - 4x^2}{(x^2 + 3)^3} = 72 \frac{1 - x^2}{(x^2 + 3)^3}$.
Thus

Thus

- (1) f(0) = -3, $f(x) = \frac{(x-3)(x+3)}{x^2+3}$ so vanishes at $x = \pm 3$, negative between them, positive otherwise (2) f'(x) is negative for x < 0, zero at x = 0, positive at x > 0 (hence at the critical number x = 0 we have a local minimum)
- (3) f''(x) has the same sign as $(1-x)^2 = (1-x)(1+x)$ so it is negative if x < -1 or x > 1, positive if -1 < x < +1 and zero at $x = \pm 1$ which are therefore inflection points.

The "special" points were: -3, -1, 0, 1, 3 so we break up the domain of f at those points:

x	$(-\infty, -3)$	-3	(-3, -1)	-1	(-1,0)	0	(0, 1)	1	(1,3)	3	$(3,\infty)$
f	+	0	-	-2	-	-9	-	-2	-	0	+
f'	+	+	+	+	+	0	+	+	+	+	+
f''	-	-	-	0	-	-	-	0	-	-	-
[Plot to be added]											

Plot to be added

2.2. $f(x) = x^{2/3}(x-1)$.

•
$$f'(x) = \frac{2}{3}x^{-1/3}(x-1) + x^{2/3} = \frac{2(x-1)+3x}{3x^{1/3}} = \frac{5x-2}{3x^{1/3}}$$

•
$$f''(x) = \frac{5}{3x^{1/3}} - \frac{5x-2}{9x^{4/3}} = \frac{15x-(5x-2)}{9x^{4/3}} = \frac{10x+2}{9x^{4/3}}$$

Thus (note: $x^{2/3}$ and $x^{4/3}$ are always non-negative; $x^{1/3}$ has the same sign as x)

- (1) f(0) = 0, f(1) = 0 and f is positive if x < 1 negative if x > 1 ($x^{2/3} \ge 0$ for all x)
- (2) The critical numbers are 0 (f' undefined) and $\frac{2}{5}$ (f' = 0). Otherwise f' > 0 if x < 0, f' < 0 if $0 < x < \frac{2}{5}$ and f' > 0 if $x > \frac{2}{3}$.
- (3) Thus f'' is undefined at 0, vanishes at $-\frac{1}{5}$, and is negative if $x < -\frac{1}{5}$, positive if $-\frac{1}{5} < x < 0$ or x > 0, so only $-\frac{1}{5}$ is an inflection point.

Summary table:

x	$\left \left(-\infty, -\frac{1}{5} \right) \right $	$-\frac{1}{5}$	$(-\frac{1}{5},0)$	0	$(0,\frac{2}{5})$	$\frac{2}{5}$	$(\frac{2}{5},1)$	1	$(1,\infty)$
f	-	$-\frac{4}{5^{5/3}}$	-	0	-	$-\frac{3\cdot 4^{1/3}}{5^{5.3}}$	-	0	+
f'	+	+	+	undef	-	0	+	+	+
f''	-	0	+	undef	+	+	+	+	+

[Plot to be added]