
Math 223: Problem Set 2 (due 19/9/12)

Practice problems (recommended, but do not submit)
• Study the method of solving linear equations introduced in section 1.4 and use it to solve

problem 2 of section 1.4.
• Section 1.4, problems 1-5 (ignore matrices), 8, 12-13, 17-19.
• Section 1.5, problems 1,2 (ignore matrices), 4, 9, 10

Linear dependence and independence

1. Let u =
(

a
b

)
,v =

(
c
d

)
∈ R2 and suppose that u 6= 0. Show that v is not dependent on u

iff ad−bc 6= 0.

2. In each of the following problems either exhibit the given vector as a linear combination of
elements of the set or show that this is impossible (cf. PS1 problem 2).

(a) V = R3, S =


 1

0
1

 ,

 1
1
0

, v =

 −4
−2
0

 (b) Same V,S but v =

 −4
−2
−2

.

(c) V = R2, S =
{(

a
b

)
,

(
c
d

)}
such that ad−bc 6= 0, v =

(
e
f

)
.

3. Spans
(a) Let W = Span(S) where S is as in 2(a),(b). Identify W as the set of triples which solve a

single equation in three variables.
(b) Let T =

{
xk+1− xk}∞

k=0 ⊂ R[x]. Show that Span(T )⊂ {p ∈ R[x] | p(1) = 0}.
(*c) Show equality in (b).

4. For each vector in the following set S⊂R4 decide whether that vector is dependent or indepen-
dent of the other vectors in S. Here S = {(0,0,0,0),(0,0,3,0),(1,1,0,1),(2,2,0,0),(0,0,0,−1)}.

*5. Let S ⊂ R[x] be a set of non-zero polynomials, no two of which have the same degree. Show
that S is linearly independent. (Hint later)

6. (Polynomials)
(a) Show that, as functions on (−1,1) the function 1

1−x is linearly independent of the functions{
xk}∞

k=0.
RMK Note that ∑

∞
k=0 xk = 1

1−x holds on that interval, but don’t forget that the summation
symbol on the left does not stand for repeated addition. Rather, it stands for a kind of
limit.

(b) Let S =
{

1+ xk}∞

k=1 ⊂ R[x] (that is, S is the set of polynomials 1 + x,1 + x2,1 + x3, · · · ).
Show that this set is linearly independent.

(c) Give a simple definition to decide if a polynomial is in Span(S).
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The “minimal dependent subset” trick
The following result (7(d)) is a uniqueness result, very handy in proving linear independence.

7. Let V be a vector space, and let S⊂V be linearly dependent. Let S′⊂ S be a linearly dependent
subset of the smallest possible size, and enumerate its elements as S′ = {vi}

n
i=1 (so n is the size

of S′ and the vi are distinct, in particular n≥ 1).
(a) Show that S contains a finite subset which is linearly dependent (this is a test of under-

standing the definitions)
RMK Part (a) justifies the existence of S′.
(b) By definion of linear dependence there are scalars {ai}n

i=1⊂R not all zero so that ∑
n
i=1 aivi =

0. Show that all the ai are non-zero.
(c) Conclude from (b) that every vector of S′ depends on the other vectors.
(*d) Suppose that there existed other scalars bi so that also ∑

n
i=1 bivi = 0. Show that there is a

single scalar t such that bi = tai for all 1≤ i≤ n.

**8. (Linear independence of functions) Some differential calculus will be used here.
(a) Let r1, . . . ,rn be distinct real numbers. Show that the set of functions {erix}n

i=1 is indepen-
dent in RR.

(b) Fix a < b and consider the infinite set {cos(rx),sin(rx)}r>0 ∪{1} of functions on [a,b]
(you can treat 1 as the function cos(0x)). Show that this set is linearly independent.

Independence in direct sums
SUPP Before thinking more about direct sums, meditate on the following: by breaking every

vector in Rn+m into its first n and last m coordinates, you can identify Rn+m with Rn⊕Rm.
Now do the same problem twice:
(a) Let n,m ≥ 1 and let S1,S2 ⊂ Rn+m be two linearly independent subsets. Suppose that

every vector in S1 has all it last m coordinates zero, and that every vector in S2 has its first
n coordinates zero. Show that S1 ∪ S2 is also linearly independent. If n = 2, m = 1 this

means that vectors from S1 look like

 ∗∗
0

 and vectors in S2 look like

 0
0
1

.

(b) Let V,W be two vector spaces. Let S1 ⊂V and S2 ⊂W be linearly independent. Show that
{(v,0) | v ∈ S1}∪{(0,w) | w ∈ S2} is linearly independent in V ⊕W .

RMK To understand every problem about direct sums consider it first in the case of part (a).
Then try the general case.
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Hint for 5: (1) In a linear combination of polynomials from S, consider the polynomial of high-
est degree appearing with a non-zero coefficient. (2) Try to see what happens if S =

{
1+1,1+ x,1+ x2}.

Supplementary problem: another construction
A. (Quotient vector spaces) Let V be a vector space, W a subspace.

(a) Define a relation · ≡ · (W ) (read “congruent mod W”) on V by v≡ v′ (W ) ⇐⇒ (v−v′)∈
W . Show that this relation is an equivalence relation, that is that it is reflexive, symmetric
and transitive.

(b) For a vector v ∈ V let v +W denote the set of sums {v+w | w ∈W}. Show that v +W =
v′+W iff v +W ∩ v′+W 6= /0 iff v− v′ ∈W . In particular show that if v′ ∈ v +W then
v′+W = v+W . These subsets are the equivalence classes of the relation from part (a) and
are called cosets mod W or affine subspaces.

(c) Show that if v≡ v′ (W ) and u≡ u′ (W ) and a,b ∈ R then av+bu≡ av′+bu′ (W ).
DEF Let V/W = {v+W | v ∈V} be the set of cosets mod W . Define addition and scalar

multiplication on V/W by (v+W )+(u+W ) def= (v+u)+W and a(v+W ) def= (av)+W .
(d) Use (c) to show that the opereation is well-defined – that if v +W = v′+W and u +W =

u′+W then (v+u)+W = (v′+u′)+W so that the sum of two cosets comes out the same
no matter which vector is chosen to represent the coset.

(e) Show that V/W with these operations is a vector space, known as the quotient vector space
V/W .

Supplementary problems: finite fields
Let p be a prime number. Define addition and multiplication on {0,1, · · · , p−1}as follows:

a+p b = c and a · pb = d if c (resp. d) is the remainder obtained when dividing a+b (resp. ab) by
p.
B. (Elementary calculations)

(a) Show that these operations are associative and commutative, that 0 is neutral for addition,
that 1 is netural for multiplication.

(b) Show that if 1 < a < p then a+p (p−a) = 0, and conclude that additive inverses exist in
this system.

(c) Show that the distributive law holds.
(d) Show that for every integer n, np−n is divisible by p.

Hint: Induction on n, using the binomial formula and that p|
(p

k

)
if 0 < k < p.

(e) Show that for every integer a, if 1≤ a≤ p−1 then p|ap−1−1.
Hint: If p|xy but p - x then p|y.

(f) Show that for every integer a, 1≤ a≤ p−1, ap−1 = 1 if we exponentiation means repeated
· p rather than repeated · .

(g) Conclude that every 1≤ a≤ p−1 has a multiplicative inverse.

DEFINITION. The field defined in problem B is called “the field with p elements” or “F p” and
denoted Fp.

C. Let (V,+) be set with an operation, and suppose all the axioms for addition in a vector space
hold. Suppose that for every v ∈V , ∑

p
i=1 v = 0 (i.e. if you add p copies of the same vector you

always get zero). Define av = ∑
a
i=1 v for all 0 ≤ a < p and show that this endows V with the

structure of a vector space over Fp.
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