
Math 223: Problem Set 8 (due 2/11/12)

Practice problems (recommended, but do not submit)
Section 4.1, Problems 1-8.
Section 4.2, Problems 1-23 (don’t do all of them!)

Calculations

1. Let A =
(

1 2
3 4

)
, B =

1 2 3
4 5 6
7 8 9

, C =

3 5 7
4 5 6
7 1 9

, D = BC.

(a) Evaluate the determinant of the above matrices using the definition Check that det(BC) =
detB · detC.

(b) Evaluate the same determinants using Gaussian elimination.

2. A permutation matrix is an n× n matrix P having all entries zero except that in every row

and column there is exactly one 1. Examples include In,
(

0 1
1 0

)
and

0 1 0
0 0 1
1 0 0

. Show that

detP ∈ {±1} for every permutation matrix. (Hint)

3. Let V be a two-dimensional vector space, A an area form on V . Let T ∈ End(V ) be linear.
We know that the function A′(u,v) = A(T u,T v) is also an area form, and in fact that there is
c such that for all u,v ∈ V , A′(u,v) = cA(u,v). We then defined c = detT . Let {v1,v2} be a

basis of V and let B =
(

b11 b12
b21 b22

)
be the matrix of T with respect to this basis. Calculate

A′(v1,v2) in terms of A(v1,v2) and conclude that detT = detB (use the definition of detB as in
the textbook).

4. (Elementary matrices)
(a) Check that if i 6= j then det(In + cE i j) = 1.
(b) Show that detdiag(a1, . . . ,an) = ∏

n
i=1 ai = a1a2 · · ·an

(c) Conclude that if E is one of the matrices from (a),(b) them det(At) = detA, where (At)i j =
A ji.

5. (Vandermonde I) Calculate the following determinants: V2(x1,x2) =
∣∣∣∣1 x1
1 x2

∣∣∣∣, V3(x1,x2,x3) =∣∣∣∣∣∣
1 x1 x2

1
1 x2 x2

2
1 x3 x2

3

∣∣∣∣∣∣ .
PRAC Can you guess a formula for Vn(x1, . . . ,xn) the determinat of the matrix A such that

Ai j = x j−1
i ?

Complex numbers
PRAC-A (Transpose) For a matrix A ∈ Mn,m(R) the transpose of A is the matrix At ∈ Mm,n(R)

such that (At)i j = A ji.
(a) The map A 7→ At is a linear map, and (At)t = A.
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(b) Suppose that the product AB makes sense. Then (AB)t = BtAt .

6. Let C =
{(

a b
−b a

)
| a,b ∈ R

}
⊂ M2(R). We will denote elements of C by lower-case

letters like z,w.
(a) Show that C is a subspace of M2(R). In particular, addition in C satisfies all the usual

axioms.
(b) Show that C is closed under multiplication of matrices, that I2 ∈C and that zw = wz for any

z,w ∈ C. It follows that multiplication in C is associative, commutative, has an identity,
and is distributive over addition.

(c) Use PS5 problem 3 to show that every non-zero z ∈ C is invertible and derive a formula
for the inverse.

DEF A set equipped with an addition and a multiplication operations which are commutative,
associative, and have neutral elements, satisfying the distributive law and such tha every
elemenent has an additive inverse, and every non-zero element has a multiplicative inverse,
is called a field.

RMK The field C constructed above contains a copy of R – indeed by PS7 problem 3 (prac-

tice part) the identification a↔
(

a
a

)
respects addition and multiplication of real

numbers; we do this from now on. [In fact, we already agreed to identify the number a
with the linear map of multiplication by a].

(d) Let i =
(

0 1
−1 0

)
∈C. Show that i2 =−1 (note that 1 =

(
1 0
0 1

)
) and that that every

elememt of C can be uniquely written in the form a + bi for some a,b ∈ R (hint: your
answer should use the work “basis”)

DEF From now on if asked to calculate a complex number write it in the form a+bi. Do NOT
use the cumbersome specific realization of parts (a)-(d).

RMK Really try to forget the specific construction of parts (a)-(d) and only work in terms of
the basis {1, i}. In particular, note that (a+bi)(c + di) = (ac−bd) + (ad + bc)i – you
showed this for (b), but it also follows from the applying the distributive law and other
laws of arithmetic and at some point using i2 =−1.

(e) Calculate (1+2i)+ (3 + 7i), (1 + 2i) ·(3 + 7i), 7+3i
1+2i (hint: division means multiplication

by the inverse!)
EXAMPLE (5−2i) ·(1+ i) = 5 ·(1+ i)+(−2i)(1+ i) = 5+5i−2i−2i · i = 5+3i−2 ·(−1) =

7+3i.
PRAC-B (Inverting complex numbers using the norm)

DEF The complex conjugate of z ∈ C is the number z̄ represented by the matrix zt .
(a) Check that a+bi = a−bi and show that z+w = z+w and zw = zw using PRAC-A. Only

then do it again by direct calculation.
(b) Show that zz̄ is a non-negative real for all z ∈ C (again we identify a ∈ R with the matrix

aI2), and that zz̄ = 0 iff z = 0. Conclude z 6= 0 then z · z̄
zz̄ = 1, a variant of the proof of 6(c).

DEF The norm of zz̄ is defined to be |z| def=
√

zz̄.
(c) Show that |zw|= |z| |w|. (Hint: this is easy using part (a) of this problem).
(d) Show that z

w = zw̄
|w|2

.
7. (Linear algebra over the complex numbers)
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DEF A complex vector space is a triple (V,+, ·) satisfying the usual axioms except that mul-
tiplication is by complex rather than real numbers.

DEF CX is the space of C-valued functions on the set X . This is a complex vector space
under pointwise operations (review the definition of RX ). In particular, Cn is the space of
n-tuples.

FACT Everything we proved about real vector spaces is true for complex vector spaces. For
example, the standard basis {ek}

n
k=1 ⊂ Cn is still a basis. We use dimCV to denote the

dimension of a complex vector space, and when needed dimRV to denote the dimension
of a real vector space.

(a) In the vector space C2 calculate (1 + 2i) ·
(

i
3−7i

)
. Show that

{(
1
i

)
,

(
1
−i

)}
form a basis for C2.

(b) Show that
{(

1
0

)
,

(
i
0

)
,

(
0
1

)
,

(
0
i

)}
⊂ C2 are linearly independent over R [that

is: if a linear combination with real coefficients is zero, then the coefficients are zero].

RMK Since
(

a+bi
c+di

)
= a

(
1
0

)
+b
(

i
0

)
+c
(

0
1

)
+d
(

0
i

)
this set is also spanning,

(c) Solve the following system of linear equations over C:
5x+ iy+(1+ i)z = 1
2y+ iz = 2
−ix+(3− i)y = i

Challenge problem – the Fifteen puzzle

8. The “fifteen puzzle” is played on a n× n grid. The puzzle consists of n2− 1 sliders, labelled
with the numbers between 1 through n2− 1, placed on distinct grid points, leaving one grdi
point empty. We will call such a placement a configuation of the puzzle. A legal move consists
of sliding one of the sliders vertically or horizontally into the empty position. For the purposes
of a mathematical description we will replace the empty position with an additional slider
marked “n2”, so that a configuation consists of a matrix C ∈ Mn(R) with the entries being
1,2,3, · · · ,n2 in some order, and legal moves consists of exchanging the token marked “n2”
with one of its neighbours.
DEF To go through the grid points in “natural order” means to go through the first row in

order left-to-right, then the second row left-to-right and so on. We say a grid position
occurs “later” than another if it will be checked later when going through the grid in order.
Define the number of crossings of a configuation to be the number of pairs of grid points
such that the number written in the later position of the two is smaller than the number
written in the earlier one. Now define the parity ε(C) of a configuration to be +1 if there
is an even number of crossings, −1 if there is an odd one. Define the total parity to be the
number δ (C) = ε(C)× (−1)i+ j where (i, j) are the coordinates of the position marked n2.

EXAMPLE (n = 3) Let C =

2 1 5
9 8 3
4 6 7

. Then the legal moves are to exchange the 9 with the

1,8 or 4, the crossings are (in terms of the numbers written in the grid points, not in term
of positions) 2→ 1, 9→ 8, 9→ 3, 9→ 4, 9→ 6, 9→ 7, 8→ 3, 8→ 4, 8→ 6, 8→ 7, the
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parity is (−1)10 = 1 and the total parity is (−1)10(−1)2+1 =−1 since the 9 is in position
2,1.

(**a) Let C,C′ be two positions connected by a single legal move. Show that ε(C) =−ε(C′)
and that δ (C) = δ (C′).

(b) Let C,C′ be two positions such that we can go from C to C′ by m≥ 0 legal moves. Show
that δ (C) = δ (C′).

(c) (Negating solution to the Fifteen Puzzle) Show that there is no sequence of legal moves that

starts in the configuation


1 2 3 4
5 6 7 8
9 10 11 12

13 15 14 E

 and ends in the configuation


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 E

.

Here we denoted the empty position E rather than 16.
Supplementary problems

A (Inefficiency of minor expansion) Suppose that the “minor expansion along first row” algo-
rithm for evaluating determinants requires Tn multiplications to evaluate an n×n determinant.
(a) Show that T1 = 0 and that Tn+1 = (n+1)(Tn +1).
(b) Show that for n≥ 2 one has Tn = n!

(
∑

n−1
j=1

1
j!

)
(c) Conclude that n!≤ Tn ≤ e ·n! for all n≥ 2.

B Let X be a set. A permutation of X is a function σ : X → X which injective and surjective.
The set of permutations of X is denoted SX .
(a) Which of the following are permutations: (i) σ(n) = n + 1 on N; (ii) σ(n) = n + 1 on Z;

(iii) σ(n) = 2n on Z; (iv) σ(n) = 2n on Q ?
(b) (Group property) Suppose that σ ,τ ∈ SX . Show IdX ,σ ◦ τ,σ−1 ∈ SX ,
DEF When X = {1,2, · · · ,n}we usually write Sn rather than S{1,··· ,n}, and write individual

elements via their graphs like so:
(

1 2 3 4
4 1 3 2

)
for the map suchthat σ(1) = 4, σ(2) = 1,

σ(3) = 3, σ(4) = 2.

(c) Calculate
(

1 2 3 4
4 1 3 2

)
◦
(

1 2 3 4
4 1 3 2

)
,
(

1 2 3 4
4 1 3 2

)
◦
(

1 2 3 4
3 2 4 1

)
(hint: plug in

1,2,3,4 to the funciton on the right of the ◦, and then the output of that to the function on
the left).

DEF Define the crossing number of σ ∈ Sn to be the number c(σ) def= {(i, j) | 1≤ i < j ≤ n, σ(i) > σ( j)},
and the parity (or sign) of σ to be the number (−1)σ def= (−1)c(σ)

(d) Calculate the crossing number and parity of the permutations appearing in (c).
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