
Math 223: Problem Set 9 – All for practice

DO NOT SUBMIT these problems.
(1),(2),(3) practice calculating determinants recursively. The Vandermonde determinant (3) is

important beyond this course. We will use (4) repeatedly. Complex numbers practice (6) will
also be useful. Problem 7 is one of my favorite problems in undergraduate mathematics, but don’t
spend time on it this week. Hint for 1,2,3: try what happens with small matrices (2x2, 3x3, 4x4,
5x5) before tackling the general case.

Three determinants
1. Fix numbers a,b and let Hn be the matrix with entries ti j so that for all i, tii = a, ti,(i−1) =

ti,(i+1) = b (for i where this makes sense) and ti j = 0 otherwise. Let hn = detHn.
(a) For n≥ 1 show that hn+2 = ahn+1−b2hn.
(b) Using the methods of the lecture (codified in Problem 5 below), solve the recursion in the

case a = 5, b = 2 and find a closed-form expression for hn.

2. Let Hn(d1, · · · ,dn) be the matrix Jn+diag(d1, . . . ,dn) and let hn(d1, · · · ,dn)= det [Hn(d1, · · · ,dn)]
(a) Show that hn(0,d2, . . . ,dn) = ∏

n
j=2 d j. (Hint: subtract the second row from the first)

(b) Suppose that n≥ 3. Show that hn(d1,d2, . . . ,dn)= d1hn−1(d2, . . . ,dn)+d2hn−2(0,d3, . . . ,dn).
(c) Suppose that all the di 6= 0 and that n≥ 3. Show that hn(d1,...,dn)

∏
n
j=1 d j

= hn−1(d2,...,dn)
∏

n
j=2 d j

+ 1
d1

.

(d) Show that h2(d1,d2)
d1d2

= 1
d1

+ 1
d2

+1, and thus that hn(d1,...,dn)
∏

n
j=1 d j

= ∑
n
j=1

1
d j

+1.

CONCLUSION hn(d1, . . . ,dn) =
(

∑
n
j=1

1
d j

+1
)(

∏
n
j=1 d j

)
.

3. (“Vandermonde determinant”) Let xi be variables and let Vn(x1, . . . ,xn) be the n×n matrix with
entries vi j = x j−1

i . We show that detVn = ∏
n
i=2 ∏

i
j=1
(
xi− x j

)
.

(a) Show that detVn is a polynomial in x1, . . . ,xn of total degree 1+2+3+ · · ·+n = n(n+1)
2 .

(b) Show that detVn vanishes whenver xi = x j (which leads you to suspect that xi− x j divides
the polynomial).

RMK Note that ∏
n
i=2 ∏

i
j=1
(
xi− x j

)
is a polynomial of total degree n(n+1)

2 . It follows from (a)
and the theory of polynomial rings over integral domains that ∏

n
i=2 ∏

i
j=1
(
xi− x j

)
actually

does divide the determinant, and comparing degrees of the two it follows that the quotient
has degree zero, that is that for some constant cn ∈ Z, detVn = cn ∏

n
i=2 ∏

i
j=1
(
xi− x j

)
.

SUPP Suppose that detVn = cn ∏
n
i=2 ∏

i
j=1
(
xi− x j

)
held for each n. Use the trick of setting

xn+1 = 0 to show that cn+1 = cn. Since c1 = 1 this proves the main claim.
(b) Let Vn+1(x1, . . . ,xn+1) be the matrix described above, and let Wn+1 be the matrix obtained

by
(i) Subtracting the first row from each row; and then
(ii) For j descending from n + 1 to 2, subtracting from the jth column a multiple of the

( j−1)st so as to make the top entry in the column zero.
Let
(
wi j
)n+1

i, j=1 be the entries of Wn+1. Show that w11 = 1 that w1 j = wi1 = 0 if i, j 6= 1 and
that wi j = (xi− x1)vi j if i, j ≥ 2.

(c) Show that detVn+1 =
[
∏

n+1
i=2 (xi− x1)

]
· [detVn(x2, . . . ,xn+1)].

(d) Check that detV1 = 1 and prove the main claim by induction.
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Linear recurrences
4. Let T ∈ End(V ) and let v ∈V satisfy T v = λv.

(a) Show that T nv = λ nv for all n≥ 0.
(b) Suppose that T is invertible and v 6= 0. Show that λ 6= 0 and that T−nv = λ−nv.
(c) Let p ∈ R[x] be a polynomial of degree n. Show that p(T )v = p(λ )v.

5. Let Fn+k = ∑
k−1
i=0 ciFn+i be a recusion relation of degree k, and let p(x) = xk−∑

k−1
i=0 cixi be its

characteristic polynomial.
(a) Explain why we generally assume c0 6= 0.
(b) Show that a sequence F satisfies the recursion relation iff p(L)F = 0, were L ∈ End(R∞)

is the left shift operator.
(c) Show that Ker(p(L)) is k-dimensional, and that any F ∈ Ker(p(L)) is determined by

(F0,F1, . . . ,Fk−1).
(d) Suppose that r is a root of p(x). Show that the sequence (rn)n≥0 ∈Ker(p(L)) and that it is

non-zero.
FACT Any set of (non-zero) eigenvectors of a map, corresponding to distinct eigenvalues, is

linearly independent.
ASSUME for the rest of the problem that p(x) has k distinct roots {ri}k

i=1.
(e) Find a basis for Ker(p(L)).
(f) Let (F0,F1, . . . ,Fk−1) be any numbers. Show that the system of k equations ∑

k−1
i=0 Air

j
i = Fj

(1≤ j ≤ k) in the unkonwns Ai has a solution. (Hint: problem 2)
Now do problem 1(b)

Practice with complex numbers
6.

(a) Let w = a+bi be a non-zero complex number. Show that there are two complex solutions
to the equation z2 = w. (Hint: write z = x + yi and get a system of two equations in the
unknowns x,y).

(b) Let a,b,c∈C with a 6= 0. Show that the polynomial az2 +bz+c∈C[z] factors as a product
of linear polynomials. (Hint: use the quadratic formula)

Challenge: Practice with Incidence geometry
An incidence structure is a triple pair (P,L,∈) where P is a set (its elements are called points),

L is a set (its elements are called “lines”) and we write p ∈ ` if the point p lies on the line ` (is
incident to it) and p /∈ ` if the reverse holds. We always assume that P,L are finite.

THEOREM (De Bruin–Erdős). Suppose that for any two distinct points p, p′ there is a unique
line ` such that p ∈ ` and p′ ∈ `, and that not all points are on the same line. Then there are at
least as many lines as points.

7. Let (P,L,∈) be an incidence structure such that any two points determine a unique line.
(a) Suppose that for some point p there is only one line containing p. Show that this line

contains all points.
DEF Let T : RP→RL, S : RL→RP be the maps (T f )(`) = ∑p∈` f (p) (sum over points on `)

and (Sg)(p) = ∑p∈` g(`) (sum over lines containing p).
(b) Show that T,S are linear.
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(c) Suppose that P = {pi}n
i=1 is finite. Show that the matrix of ST in the “standard basis” of

RP (the ith basis vector is the function which is 1 at pi, zero elsewhere) is Jn +diag(d1−
1, . . . ,dn−1) where Jn is the all-ones matrix and di is the number of lines through pi.

(d) Suppose that not all points are on the same line. Show that det(T S) > 0.
(e) Prove the Theorem.

8. Suppose that we add the axiom “every two distinct lines intersect at exactly one point”.
(a) Show that in this case exchanging the role of points and lines gives a new incidence struc-

ture (the “dual one”) satisfying the two axioms.
(b) Conclude that with the extra axiom there only three possibilities: (1) there is exactly one

line and it contains all the points; (2) there is exactly one point and it lies on all lines; (3)
there are as many lines as points

Supplementary problem: Quadratic extensions in general
A (Constructing quadratic fields) Let F be a field, d ∈ F such that x2 = d has no solutions in F .

(a) Show that the set of matrices E =
{(

a b
db a

)
| a,b ∈ F

}
is a field.

(b) Show that E is two-dimensional over F with basis 1,ε where ε =
(

1
d

)
satisfies ε2 = d.

(c) Show that the map σ : E → E given by σ(a + bε) = a− bε satisfies σ(x + y) = σ(x)+
σ(y), σ(xy) = σ(x)σ(y), σ(a) = a for all a ∈ F .

(d) Show that the norm Nz = zσ(z) satisfies Nz ∈ F for all z ∈ E, Nz 6= 0 if z 6= 0, N(zw) =
NzNw.

B. (Uniqueness) Let E ′ be a field containing F which is spanned over F by elements 1,ε with
ε2 = d. Let z = a+b

√
d ∈ E ′ be any element and let Mz : E ′→ E ′ be the map of multiplication

by z. Show that Mz is F-linear and that its matrix in the basis {1,ε} is
(

a b
db a

)
.
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