Math 538: Commutative Algebra Problem Set

This problem set is for those who want to dig deeper. We may use some of those results in
class, or only in problem sets.

Zorn’s Lemma

DEFINITION. Let F be a set of sets. A chain in F is a subset C C F such that forany A,B € C
either A C Bor B C A. An element M € F is maximal if it is not contained in any other member.

AXIOM (Zorn’s Lemma). Let F be non-empty. Suppose that for any chain C C F the set
UC = UuecA also belongs to F. Then F has maximal elements.

1. Let F be afield, V a vector space over F. Let F be the family of linearly independent subsets
of V. Show that F has maximal elements and conclude that V has a basis.

2. Let R be a ring (recall that rings here are commutative with identity), / C R a proper ideal.
Show that there exists a maximal ideal M of R containing /.

3. LetRbearing, S C R\ {0} a subset closed under multiplication. Show that there is a prime
ideal P disjoint from S.

OPT Let (X, <) be a partially ordered set (that is, < is transitive and reflexive, and x < y Ay <
X —Xx=1Y). A chainin X is a subset Y C X such that any two elements of Y are comparable
(if x,y € Y then at least one of x < y,y < x holds). An upper bound for a chain Y is an element
x € X satisfying y < x for all y € Y. Show: suppose every chain in X has an upper bound. Then
X has maximal elements.

Primes and Localization

Fix a commutative ring R. A multiplicative subset of R is a subset S C R\ {0} closed under
multiplication such that 1 € S. Fix such a subset.

4. Consider the following relation on R x S: (r,s) ~ (¥',s') <= 3Jre S:t(s'r—sr') =0 (the
intended interpretation of the pair (7,s) is as the fraction %).

(a) Show that this is an equivalence relation, and that (1,1) ¢ (0,1).

DEF Let [r,s] (or ) denote the equivalence class of (r,s), and let R[S™'] denote the set of
equivalence classes. Let 1: R — R[S™!] denote the map 1(r) = [, 1].

(b) Define [r,s] + [r,s'] = [rs' +7's,ss] and [r,s] - [F,s'] = [rr,ss’]. Show that this defines a
ring structure on R[S™!] and that 1 is a ring homomorphism such that 1(S) C R[S™!]*.
Show that 1 is injective iff S contains no zerodivisors.

(c) Show that for any ring 7" and any homomorphism ¢: R — T such that ¢(S) C T* there is
a unique ¢': R[S™!] — T such that ¢ = ¢’ o1,

(d) Let I <tR[S™!] be a proper ideal. Show that 1~!(I) is a proper ideal of R disjoint from S,
and that I is the ideal of R[S~!] generated by 1(1~1(I)).

(e) Conclude that when S = R\ P for a prime ideal P (why is this closed under multiplication?)
the ring R[S _1] is local: it has a unique maximal ideal (that being the ideal generated by
the image of P).
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DEFINITION. We call R[S™!] the localization of R away from S. If S = R\ P for a prime ideal
P we write Rp for R[S~!] and call it the localization of R at P.

5. Now let M be an R-module. On M x S define the relation (m,s) ~ (m',s') <= FIFr €S

t(s'm—sm') = 0 (with the interpretation 1m).

(a) Show that this is an equivalence relation, and that setting [m, s| + [m',s'] = [s/m+sm’, s5']
and [r,s] - [m,s'] = [rm, ss'] gives M[S~!], the set of equivalence classes, the structure of an
R[S~ !]-module.

(b) Let @: M — N be a map of R-modules. Show that mapping [m,s] — [@(m),s] gives a
well-defined map @g-1: M[S~!] — N[S~!] of R[S~ !]-modules.

(c) Show that ¢g-1 is surjective if @ is.

(d) Show that Ker@g 1+ = {[m,s] € M[S™'] |3t € S:tm € Kero}.

6. (The key proposition)
(a) Let M be a non-zero R-module. Show that there is a prime P (in fact, a maximal ideal)
such that Mp is a non-zero Rp-module.
(b) Let M C N be R modules. Show that M # N iff there is a prime P such that Mp # Np.

7. (Examples)

(a) LetRbe an integral domain. Show that K (R) = R g) is a field. This is known as the fraction
field of R. Show that in this case R[S~!] is isomorphic to the subring of K(R) genreated by
the image of R and of the inverses of the elements of S.

(b) Let p be a rational prime. Show that the Z,) is a discrete valuation ring: that for every
x € Q* at least one of x,x ! belongs to Z(p).

(c) Let A < Z¢ be a subgroup of finite index, and let 1: A — Z be the incusion map. Show
that 1) Ay — (Z p))d is an isomorphism iff p does not divide the index.

Integrality in general: A tour in commutative algebra

DEFINITION. Let A C B be an extension of rings. 3 € B is said to be integral over A if p(f) =0
for some monic p € Alx].

8. (Basic properties)
(a) B € B is integral over B iff A[B] is a finitely generated A-module iff there is a finitely
generated A-module M C B such that aM C M.
(b) Let o, B € B be integral over A. Then so is every element of A|a, 8]
(c) The set of elements in B integral over A is a subring of B called the integral closure of A
in B, and denoted A. Say that A is integrally closed in B if A = A (say an integral domain
is integrally closed if it is integrally closed in its field of fractions).

9. LetA C B C C be arings.
(a) Suppose B is integral over A and y € C is integral over B. Then 7Y is integral over A.
COR Let y € C be integral over the integral closure of A in B. Then it is integral over A.
COR Suppose A is integrally closed in B and B is integrally closed in C. Then A is integrally
closed in C.
(b) Let L/K be an extension of number fields. Then Oy is the integral closure of Ok in L.
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Hints

For 6a: Let m € M be non-zero. Check that Ann(m) = {r € R | rm = 0} is a proper ideal and
localize at a maximal ideal containing it.
For 6b: Localize at P so that (N/M), # 0.
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CHAPTER 1

Number Fields and Algebraic Integers

DEFINITION 7. A number field is a finite extension of Q.

Fix a number field K from now on. Letn = [K : Q).

1.1. Algebraic Integers

DEFINITION 8. An element o € K is said to be an algebraic integer if p(a) = 0 for some
monic polynomial p € Z[x]. The set of algebraic integers in K is denoted Ok and called the “ring
of integers” or the “maximal order”.

LEMMA 9. o € K is an algebraic integer iff its minimal polynomial is in 7.[x|.

PROOF. One direction is immediate. For the other, let p € Z[x] be monic such that p(a) =0
and let m € Q[x] be the minimal polynomial. Then m is an irreducible factor of p in Q[x], but by
Gauss’s Lemma every such divisor is in Z[x]. O

EXAMPLE 10. K = Q. The minimal polynomial of & is x — & so Og = Z. This is the “rational
root theorem”.

EXAMPLE 11. K = Q(i{). The minimal polynomial of a + bi is (x —a — bi)(x — a + bi) =
(x—a)?+b? =x— (2a)x+ (a* + b*). This is Z[x] iff 2a,a*> + b* € Z. Thus a € 3Z. If a € Z then
beQ,b*>cZsobcZ Ifad7Zthen (2a)> + (2b)? € 47 where 2a is an odd integer. This forces

(2b)? to be an integer, hence 2b to be an integer, but then (25)? is 0,1 mod 4 which is impossible
since (2a)? = 1(4). Thus a + bi is algebraic iff a,b € Z.

REMARK 12. Note that Z[i| = {a+bi | a,b € Z} is a subring of K.

LEMMA 13. B € Ok iff Z[B] is a finitely generated Abelian group iff there is a finitely generated
Abelian group M C K such that oM C M.

PROOF. If B € Ok then Z[B]| = Z D ZB & --- B ZB" ! where B has degree n. The last claim
implies the first by Cayley—Hamilton. U

THEOREM 14. Let a, B € K be algebraic integers. Then so are o+ f3, af.

PROOF. Suppose that oM C M, BN C N, where M =Y/, Zx;, N = Y1 Zyj. Then MN =
Y. j Zx;y; is invariant by o, 8 hence by Z[a, B] which contains the requisite elements. O
COROLLARY 15. Ok is a subring of K. If a € Ok then:
(1) Every conjugate of « is integral over Q;
(2) The minimal polynomial of o over Q is monic and belongs to Z[x|;
(3) Ty (@), N§ () € Z and,
(4) o€ O iff Nja € 2" = {£1}.
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