Math 538: Problem Set 4 (due 15/4/2013)

Do a good amount of problems; choose problems based on what you already know and what you need to practice. I recommend at least problems 2,4,7 and some of 5.

More on the multiplicative structure

- 1. (Diversion on exp and log) Let F be a field of characteristic zero, complete with respect to a discrete valuation. Let *R* be the valuation ring, *P* the maximal ideal.

 - (a) Show that the domain of convergence of the series $\log x = -\sum_{m=1}^{\infty} \frac{(1-x)^m}{m}$ is $U_1 = \{x \in \mathbb{R} \mid x \equiv 1 \ (P)\}$. (b) Show that the domain of convergence of the series $\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ is $\{x \mid v(x) > \frac{v(p)}{p-1}\}$ where v is the valuation, and p is the rational prime such that v(p) > 0.
 - (c) Show that $\exp(x+y) = (\exp x)(\exp y)$ and $\log(xy) = \log x + \log y$ in the domains of convergence.
 - (d) Show that $\log(\exp x) = x$ if |x| is small enough that $\exp(\log x) = x$ if |1 x| is small enough.
- 2. Let *K* be a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O}_K , maximal ideal p and residue field $\kappa \simeq \mathbb{F}_q.$
 - (a) Show that the group of roots of unity in K is exactly μ_{q-1} , the group of roots of unity of order dividing q - 1 (which is cyclic of that order).
 - (b) Show that $K^{\times} \simeq \mathbb{Z} \times \mu_{q-1} \times U_1$, each isomorphism corresponding to a choice of uniformizing element.
 - (c) Show that log defined on U_1 in 1(a) can be extended to K^{\times} so that it satisfies $\log(xy) =$ $(\log x)(\log y)$ there.
- 3. (the unexpected \mathbb{Z}_p module) Let F be a field complete with respect to a non-archimedean absolute value with valuation ring R, and maximal ideal P. Let $U = R^{\times}$ be the group of units, $U_1 = \operatorname{Ker} \left(R^{\times} \to \left(R/P \right)^{\times} \right).$
 - (a) Show that a product $\prod_{i=0}^{\infty} a_i$ converges in *F* iff $\lim_{i\to\infty} a_i = 1$.
 - (b) Show that the map $\mathbb{Z} \times U_1 \to U_1$ given by $(a, x) \mapsto x^a$ extends to a unique continuous map $\mathbb{Z}_p \times U_1 \to U_1.$
 - (c) Interpret (b) as showing that the topological commutative group U_1 has the structure of a \mathbb{Z}_p -module.

Extensions of \mathbb{Q}_p

- 4. (Quadratic extensions) Using 2(b), classify the quadratic extensions of the following fields. In each case determine which extensions are unramified.
 - (a) \mathbb{Q}_p , *p* odd.
 - (b) \mathbb{Q}_2 .
 - (c) A finite extension *K* of \mathbb{Q}_p , *p* odd.

- 5. (Unramified extensions) Let *K* be complete with respect to a non-archimedean absolute value, with residue field κ .
 - (a) Let L_1, L_2 be finite unramified extensions of *K*. Show that any κ -homomorphism $\lambda_1 \rightarrow \lambda_2$ is induced by a *K*-homomorphism $L_1 \rightarrow L_2$.
 - (b) Conclude from (a) that L_1/K and L_2/K isomorphic extensions iff λ_1/κ and λ_2/κ are isomorphic extensions.
 - (c) Conclude from (a) that the natural map $\operatorname{Aut}_{K}(L) \to \operatorname{Aut}_{\kappa}(\lambda)$ is an isomorphism when L/K is unramified. In particular, L/K is a Galois extension iff λ/κ is a Galois extension, and in that case they have isomorphic Galois groups.
 - (d) Let λ be a finite separable extension of κ . Show that there is an unramified extension L/K with residue field λ .
 - (e) If you know how, extend (a)–(d) to the case of infinite unramified extensions. Obtain a bijection between unramified extensions of K and separable extensions of κ .
 - (f) Recall that the maximal unramified extension K^{nr} of K is the compositum of all finite unramified extensions contained in a fixed algebraic closure. Show that the maximal unramified extension is a Galois extension, and that any isomorphism of algebraic closures restricts to an isomorphism of the maximal unramified extensions (justifying the definite article in "*the* maximal unramified extension").
 - (g) Show that the residue field of K^{nr} is the separable closure $\bar{\kappa}^{sep}$ of the residue field of K.
- 6. Let *K* be a *p*-adic field, that is a finite extension of \mathbb{Q}_p .
 - (a) Show that for any n, K has a unique (up to isomorphism) unramified extension of degree n.
 - (b) Show that the Galois group of any unramified extension of *K* is cyclic. Its generator is called a *Frobenius element*.
- 7. (Cyclotomic extensions) Let *K* be a *p*-adic field and let ζ_r be a primitive root of unity of order *r*.
 - (a) Suppose first that r is prime to p. Show that $K(\zeta_r)$ is an unramified extension of K.
 - (b) Suppose now that $r = p^e$ for some *e* and that $K = \mathbb{Q}_p$. Show that the minimal polynomial of $\Pi = \zeta 1$ is an Eisenstein polynomial, and conclude that $\mathbb{Q}_p(\zeta)/\mathbb{Q}_p$ is totally ramified.
 - (c) Now let $r = p^e s$ where $p \nmid s$. Show that the maximal unramified subextension of $\mathbb{Q}_p(\zeta_r)/\mathbb{Q}_p$ is $\mathbb{Q}_p(\zeta_s)/\mathbb{Q}_p$ and that $\mathbb{Q}_p(\zeta_r)/\mathbb{Q}_p(\zeta_s)$ is totally ramified.

Hint for 1a: Hensel's Lemma.

Hint for 3a: Use problem 1 to convert this to a question about an infinite sum.

Hint for 3b: Writing $(1+a)^p = 1+b$ bound |b| in terms of |a| and show that if |a| < 1 then $(1+a)^{p^n} \to 1$ as $n \to \infty$.

Hint for 7a: Use 2a, and later that the polynomial $x^r - 1$ is separable over the residue field. Hint for 7b: This happened in the very first lecture.