MATH 253 - WORKSHEET 30
TRIPLE INTEGRALS AND APPLICATIONS

(1) Consider the iterated integral f"L WP dy fz — dzf. Write the other 5 equivalent integrals
coming from changing the order of mtegratlon

Solution: See WS 29.

(2) Find the volume and the center-of-mass of the solid bounded by the parabolic cylinder y = 22, the
zy plane, and the plane y + z = 1.

Solution: The plane y + z = 1 intersects the zy plane (where z = 0) in the line y = 1. Let R be
the region in the plane bounded by the parabola y = 22 and the line y = 1. The solid then consists
of the points above R and below the plane y + z = 1 [why? either draw a picture (which is enough
for this course) or compare with the solid bound by the cylinder, the xy plane, and the plane y = 1
which contains the original solid (since the plane y = 1 is always “farther out” than y + 2z = 1 if
z > 0) and by construction has base R]. Considering a point (x,y) in R, the set of points (x,y, z) in
our solid lying above it is a “z-line” beginning at the base (zy plane, z = 0) and ending at the “roof”
plane y+ z = 1. Converting the two endpoints to statements about z, integrals over the solid will be
of the form [}, dzdy f;:olfy dzf(x,y,z). We can slice the region R itself horizontally or vertically.

e Slicing vertically, the = range is [—1,1]. In this range every verticle “y line” begins at at the

parabolic y = 22 and ends at the line y = 1. The full integral is then

/_1dx/y 1dy/ dzf:cy, z).

e Slicing horizontally, the y range is [0, 1]. In this range every horizontal “z line” beings at the left
arm of the parabola (at a point where y = 2 so x = —/y) and ends at the right arm (where
x = ,/y). Both endpoints satisfy y = z2 but are not the same point, since y has two square
roots. The full integral is also

y=1 z=1—y
/ dy/ / dzf(z,y,2).
==Y z=0

Remark: Note that the equalities y = 22 only hold at the endpoints of our “z line”, not inside
the domain.
Volume: The volume V of the region is

r=1 y=1 z=1—y
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Or equivalently

y=1 zf\/y z=1—y y=1 x:ﬂ
/ dy/ da:/ dz-1 = / dy/ dz (1 —vy)
y=0 ==Y z=0 y=0 r=—\/y
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Center of mass: The region is symmetric under reflection in the z-variable. This is clear from
the definitions (which only involve z:2), or from the integral (where the bounds on the x integral are
symmetric and any later dependence is on z?), so = 0. We will need to integrate to find 7, Z.
Using the first form of the integral, we have
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In other other order of integration the integrals would look like

15 y=1 z:\/@ z=1—y
Yy = —/ dy/ da?/ dz -y
8 y=0 ==Y z2=0
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- 5 a[ T ama-y
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and

y=1
/ (y5/2 _ 32 4 y1/2) dy
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