MATH 253 - WORKSHEET 32 SPHERICAL COORDINATES

We replace (x, y, z) with (r, θ, ϕ) via:

$$x = \rho \sin \phi \cos \theta \qquad y = \rho \sin \phi \sin \theta \qquad z = \rho \cos \phi$$

$$\rho = \sqrt{x^2 + y^2 + z^2} \qquad \tan \theta = \frac{y}{x} \qquad \cos \phi = \frac{z}{\rho}$$

The volume element is

$$dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi.$$

- (1) Express the following surfaces in spherical coordinates.
 - (a) The sphere of radius 2 about the origin.
 - (b) The "double cone" $z^2 = x^2 + y^2$.
 - (c) The paraboloid $z = x^2 + y^2$.
- (2) Let B be the ball of radius 1 about the origin. Evaluate $\iiint_B e^{-\left(x^2+y^2+z^2\right)^{3/2}} dV$.

- (3) Describe the following regions in words, then set up integration in spherical coordinates:
 - (a) $E = \{(x, y, z) \mid x, y, z \ge 0, x^2 + y^2 + z^2 \le 9\}$ (b) $E = \{(x, y, z) \mid x^2 + y^2 + (z 1)^2 \le 1\}$

Date: 27/11/2013.

CYLINDRICAL OR SPHERICAL?

(1) Let E be the "dimple" inside the sphere $x^2 + y^2 + z^2 = 2$ and above the paraboloid $z = x^2 + y^2$. Set up integration on it in spherical and cylindrical coordinates.

(2) Let E be the region above the cone $3z = \sqrt{x^2 + y^2}$ and below the plane $z = \frac{1}{2}$. Set up integration on it.