
MATH 412: NOTE ON INFINITE-DIMENSIONAL VECTOR
SPACES

Abstract. This is an explanatory note on what the basic definitions of linear
algebra mean when the vector spaces are infinite-dimensional.

1. Three examples

1.1. Finite dimensions: Rn. Consider the space Rn with its standard basis {ei}
n
i=1

(ei is the vector with 1 at the ith position, and 0 elsewhere). Why is this set a
basis? It is

(1) Spanning : Every vector in Rn can be written as a linear combination of
basis elements, that is in the form

∑n
i=1 aiei for some ai ∈ R.

(2) Independent : If
∑n
i=1 aiei = 0 then all the ai are zero; equivalently, the

zero vector has a unique representation in the basis; equivalently, every
vector can be uniquely represented.

1.2. Infinite dimensions,explicit basis: R⊕N. Let R⊕Ndenote the space of se-
quences x = (xn)

∞
n=1 which have finite support, that is so that xn = 0 from some

point onward. This space is evidently a subset of R, the space of all functions
from N to R (recall that such functions are called “sequences”). So R⊕N contains
elements like (1, 2, 3, 0, 0, 0, · · · ) and (−1, 1,−1, 1, 0, 0, · · · ) but not the sequences
(1, 1, 1, 1, 1, · · · ) or xn = (−1)n.

Problem 1. Show that R⊕N is a linear subspace of R. In other words, show that it
is non-empty and closed under addition and under scalar multiplication. (Hint: all
you need to do is control the support of the sequence you get from the operation).

Let ei now denote the sequence which is zero everywhere except for a 1 at the ith
position. Once we understand what “linear combination” and “linear independence”
mean we’ll see that this is a basis for our space.

Claim 2 (Spanning). Every vector in R⊕N can be expressed as a linear combination
of the ei. Equivalently, the ei span R⊕.

Proof. Suppose that x = (xn)
∞
n=1 ∈ R⊕, say that xn = 0 if n > N . Then x =∑N

i=1 xiei. �

Note that the sum is finite. Every vector space comes with a binary operation
+. With the use of induction (and since addition is associative) we can define
finite sums – but infinite sums make no sense. Thus forming a linear combination
using a vectors from a set S meant (1) choosing a finite subset of our set S (2) for
each vector in the finite set, choosing a coefficient. This didn’t appear in the first
example because we could always enlarge the chosen finite subset to the whole set
by extending the coefficients to be zero.

Claim 3 (Independence). The set {ei}
∞
i=1 is linearly independent.
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Proof. From the previous claim we learned what a linear combination is. So let
I ⊂ N be a finite set (this means we will consider {ei}i∈I , and suppose ai ∈ Rare
chosen, and suppose that ∑

i∈I
aiei = 0 .

We need to show that all ai = 0 – but the proof is now the same as in Rn. We can
do one of two things: either, directly take any i ∈ I and consider the ith coordinate
of the vector on the equality. From the RHS we see that it is zero. On the RHS this
is ai since ajej has zero in the ith coordinate and addition in the space of sequences
is done coordinate-by-coordinate. Alternatively, we could increase the set I to be
the full interval {1, 2, · · · , N} (and setting ai = 0 for i /∈ I). This doesn’t spoil the
fact that now

N∑
i=1

aiei = 0 .

Finally, truncate the vectors to have length N . This shouldn’t affect the equality,
and that all ai = 0 follows from the independence of the standard basis of RN . �

Claim 4. Every element of R⊕Nhas a unique representation as a combination of
basis elements.

This is by far the most confusing point, and the main reason for this note,
because with the naive notion of “unique representation” this seems false. Indeed,
the zero vector has infinitely many representations, including 0e1, 0e2, 0e3, etc.

Key: this objection is equally valid in finite dimensions. Why aren’t

1

(
1
0

)
and 1

(
1
0

)
+ 0

(
0
1

)
considered distinct representations of

(
1
0

)
∈ R2 as a

linear combination of elements of the standard basis?
• Answer: in fact, they are the same representation! – they only differ from

each other in directions where the coefficient is zero. In finite dimensions
some get around this by declaring every combination to include the whole
basis, whether the basis elements were “redundant” in it or not, and this
provided uniqueness. But that is not the only approach.

Exactly the same thing is true in R⊕: we need to consider two representations to
be the same if the only differ in terms which have a zero coefficients. There are two
ways to do this:

(1) One approach is to “reduce” every combination by excising the vectors
with zero coefficients. Such a representation is indeed unique: if you have∑
i∈I aiei =

∑
j∈J bjej and all ai, bj are non-zero, then subtract the two

sides to get
∑
i∈I aiei+

∑
j∈J(−bj)ej = 0. If some i ∈ I∩J then combine the

two summands to get a combination where every basis vector appears once.
Now if some i belongs to I but not j then in the resulting representation of
zero there will be a term aiei, which is a contradiction to the proof of inde-
pendence. If there is a j in J but not i, we’ll get a term (−bj)ej and again
it’s a contradiction. Thus I = J , and our sum reads

∑
i∈I(ai − bi)ei = 0.

Now independence forces ai = bi and the combinations are the same.
(2) Another approach (mimicking the approach you are familiar with from finite

dimensions) is to formally extend every combination to the whole basis, by
assigning every coefficient a weight of zero. In other words, we define a
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linear combination to mean a formal sum
∑∞
i=1 aiei where ai ∈ R and all

but finitely many are non-zero. The value of such a sum is defined to mean
the value of any finite subsum containing all non-zero terms (note that this
value doesn’t depend on the choice of subsum, and that such choices exist).
Now every vector has a representation using the whole basis, and uniqueness
means the obvious thing (and has the same proof as in the finite-dimension
case, coming from subtracting any two representations).

1.3. Infinite dimensions, no explicit basis: R. Let’s now look a little at the
space RNof all sequences. In this space consider the sequences xαdefined for each
α ∈ R\{0} by xαn = αn. They are linearly independent. Indeed, let S : RN → RNbe
the shift operator (Sx)n = xn+1, a linear map. Them (Sxα)n = xαn+1 = α(n+1) =
α·αn = α (xα)n so xα is an eigenvector of S with eigenvalue α. Since the eigenvalues
are distinct, the eigenvectors are linearly independent, and we obtain a linearly
independent set which is uncountably large. What does a linear combination of
these sequences look like? We need to choose finitely many α, and some coefficients
Ai, so a linear combination would look something like:

x =

r∑
i=1

Aix
αi .

Example 5. Suppose a sequence x is suppose to solve a recursion relation: for
each n it must hold that akxn+k + ak−1xn+k−1 + · · ·+ anxn = 0 (for example, the
Fibonacci sequence satisfies xn+2−xn+1−xn = 0). This is equivalent to saying that
x is in the kernel of the linear map

∑k
i=0 aiS

i. Now xα is in the kernel whenever
α is a root of the polynomial equation

∑k
i=0 aiα

i = 0. In particular, we will show
later in the course that if the polynomial has distinct roots than any solution to
the recursion relation must be a linear combination of the xαi where {αi} are the
roots of the polynomial

∑k
i=0 aiX

i.

Problem 6. Does RNhave a basis?

This turns out to be a problem in the foundations of mathematics. In this course
we choose the answer to be “yes”.

2. General definitions

We now summarize what we saw in the examples above. For this let V be a
vector space over a field F , and fix S ⊂ V . The proofs are all the same as in the
finite-dimensional case and can also be found in my notes for Math 223 (see my
website).

Definition 7. A linear combination using elements of S is a sum of the form∑r
i=1 aivi for some r ≥ 0, where ai ∈ F and vi ∈ S. A vector v ∈ V is said to

depend (linearly) on S if it is expressible as a linear combination of some vectors
of S.

Remark: the empty sum is by definition 0. Note that different linear combina-
tions have different lengths, and that some ai may be zero.

Definition 8. The (linear) span of S is the set of all linear combinations of vectors
from S (more formally, the set of all vectors expressible as linear combinations of
vectors of S).
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Lemma 9. SpanF (S) ⊂ V is a subspace. In fact, it is the intersection of all
subspaces containing S.

Proof. Exercise. �

Definition 10. A (linear) dependence of vectors in S is a sum
∑r
i=1 aivi = 0 where

r ≥ 1, ai ∈ F are not all zero, and vi ∈ S are distinct. The set S is said to be
(linearly) dependent if it has a linear dependence, (linearly) independent if no such
dependence exists.

Lemma 11 (Dependence and Independence). (1) The set S is dependent if
and only if there is some v ∈ S which depends linearly on S \ {v}.

(2) The set S is independent if and only if, for every v ∈ SpanF (S), there is a
unique representation v =

∑r
i=1 aivi where vi ∈ S are all distinct and the

ai ∈ F are all non-zero.

Proof. Exercise �

Remark 12. Note that the only representation of the zero vector is by the empty
sum (the sum with r = 0).

Lemma 13 (Bases). (1) (Maximal independent sets are spanning) Suppose S
is linearly independent. Then SpanF (S) = V if and only S is a maximal
independent set, in that for any v ∈ V \ S, S ∪ {v} is dependent.

(2) (Minimal spanning sets are independent) Suppose S spans V . Then S is
independent if and only if for any v ∈ S, S \ {v} does not span V .

Proof. Exercise. �

Definition 14. If S is linearly independent and spans V is it called a basis of V .

Axiom 15 (Axiom of Choice). Every vector space has a basis.

Proposition 16. Every linearly independent subset of V is contained in a basis of
V .

Proof. See Problem Sets 2. �

Theorem 17. Let B1, B2 be bases of V . Then there is a bijection f : B1 → B2.

Proof. Requires some cardinal arithmetic. �

Corollary 18. The cardinality of a basis of V does not depend on the choice of
basis.

Definition 19. The dimension of V , denoted dimF V , is the cardinality of any
basis of V .

Example 20. (You need to know something about cardinality for this example)
The dimension of RNis ℵ = |R|.
Proof. In Section 1.3 we say that RN contains a linearly independent set enumerated
by R \ {0}. Since any independent set can be extended to a basis, dimR RN ≥ ℵ.
Conversely, |R| = ℵ = 2ℵ0 . Thus

ℵ = |R| ≤
∣∣RN∣∣ = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = ℵ

so that
∣∣RN

∣∣ = ℵ. Since the cardinality of any basis is at most the cardinality of
the space, we have dimR

(
RN) ≤ ∣∣RN

∣∣ = ℵ and we are done. �
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Fact 21 (For amusement value only). It is consistent with the (ZF) axioms of set
theory that either (1) every vector space has a basis; or (2) every subset of the real
numbers is Lebesgue measurable. However, it is not possible that both (1) and (2)
hold at the same time.


