
Math 539: Problem Set 0 (due 15/1/2013)

Real analysis

1. Some asymptotics
(a) Let f ,g be functions such that f (x),g(x)> 2 for x large enough. Show that f � g implies

log f � logg. Give a counterexample under the weaker hypothesis f (x),g(x)> 1.
(b) For all A > 0, 0 < b < 1 and ε > 0 show that for x≥ 1,

logA x� exp
(

logb x
)
� xε .

2. Set log1 x = logx and for x large enough, logk+1 x = log(logk x). Fix ε > 0.
(PRAC) Find the interval of definition of logk x. For the rest of the problem we suppose that

logk x is defined at N.
(a) Show that ∑

∞
n=N

1
n logn log2 n··· logk−1 n(logk n)1+ε converges.

(b) Show that ∑
∞
n=N

1
n logn log2 n··· logk−1 n(logk n)1−ε diverges.

3. (Stirling’s formula)
(a) Show that

∫ k+1/2
k−1/2 log t dt− logk = O( 1

k2 ).
(b) Show that there is a constant C such that

log(n!) =
n

∑
k=1

logk =
(

n+
1
2

)
logn−n+C+O

(
1
n

)
.

RMK C = 1
2 log(2π), but this is largely irrelevant.

4. Let {an}∞

n=1 ,{bn}∞

n=1 ⊂ C be sequences with partial sums An = ∑
n
k=1 ak, Bn = ∑

n
k=1 bk.

(a) (Abel summation formula) ∑
N
n=1 anbn = ANbN−∑

N−1
n=1 An(bn+1−bn)

– (Summation by parts formula) Show that ∑
N
n=1 anBn = ANBN−∑

N−1
n=1 Anbn+1.

(b) (Dirichlet’s criterion) Suppose that {An}∞

n=1 are uniformly bounded and that bn ∈ R>0
decrease monotonically to zero. Show that ∑

∞
n=1 anbn converges.

Supplementary problem: Review of Arithmetic functions
A.

(a) The set of arithmetic functions with pointwise addition and Dirichlet convolution forms a

commutative ring. The identity element is the function δ (n) =

{
1 n = 1
0 n > 1

.

(b) f is invertible in this ring iff f (1) is invertible in C.
(c) If f ,g are multiplicative so is f ∗g.
DEF I(n) = 1, N(n) = n, ϕ(n) =

∣∣(Z/nZ)×
∣∣, µ(n) = (−1)r if n is a product of r ≥ 0 distinct

primes, µ(n) = 0 otherwise (i.e. if n is divisible by some p2).
(d) Show that I ∗µ = δ by explicitly evaluating the convolution at n = pm and using (c).
(e) Show that ϕ ∗ I = N: (i) by explcitly evaluating the convolution at n = pm and using (c);

(ii) by a combinatorial argument.
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Supplementary problems: the Mellin transform and the Gamma function

For a function φ on (0,∞) its Mellin transform is given byMφ(s) =
∫

∞

0 φ(x)xs dx
x whenver the

integral converges absolutely.
B. Let φ be a bounded measurable function on (0,∞).

(a) Suppose that for some α > 0 we have φ(x) =O(x−α) as x→∞. Show that theMφ defines
a holomorphic function in the strip 0 < ℜ(s)< α .
For the rest of the problem assume that φ(x) = O(x−α) holds for all α > 0.

(b) Suppose that φ is smooth in some interval [0,b] (that is, there b > 0 and is a function
ψ ∈ C∞ ([0,b]) such that ψ(x) = φ(x) with 0 < x ≤ b). Show that φ̃(s) extends to a
meromorphic function in C, with at most simple poles at−m, m ∈ Z≥0 where the residues

are φ (m)(0)
m! (in particular, if this derivative vanishes there is no pole).

(c) Extend the result of (b) to φ such that φ(x)−∑
r
i=1

ai
xi is smooth in an interval [0,b].

(d) Let Γ(s) =
∫

∞

0 e−tts dt
t . Show that Γ(s) extends to a meromorphic function in C with simple

poles at Z≤0 where the residues are 1.

C. (The Gamma function) Let Γ(s) =
∫

∞

0 e−tts dt
t , defined initially for ℜ(s)> 0.

FACT A standard integration by parts shows that sΓ(s) = Γ(s+1) and hence Γ(n) = (n−1)!
for n ∈ Z≥1.

(a) Let QN(s)=
∫ N

0
(
1− x

N

)N xs dx
x . Show that QN(s)= N!

s(s+1)···(s+N)N
s. Show that 0≤

(
1− x

N

)N ≤
e−x holds for 0≤ x ≤ N, and conclude that limN→∞

N!
s(s+1)···(s+N)N

s = Γ(s) for on ℜs > 0

(for a quantitative argument show instead 0≤ e−x−
(
1− x

N

)N ≤ x2

N e−x)
(b) Define f (s) = seγs

∏
∞
n=1
(
1+ s

n

)
e−s/n where γ = limn→∞

(
∑

n
i=1

1
i − logn

)
is Euler’s con-

stant. Show that the product converges locally uniformly absolutely and hence defines an
entire function in the complex plane, with zeros at Z≤0 . Show that f (s+1) = 1

s f (s).
(c) Let PN(s) = seγs

∏
N
n=1
(
1+ s

n

)
e−s/n. Show that for α ∈ (0,∞),limN→∞ QN(α)PN(α) = 1

and conclude (without using problem B) that Γ(s) extends to a meromorphic function in C
with simple poles at Z≤0, that Γ(s) 6= 0 for all s ∈C\Z≤0 and that the Weierstraß product
representation

Γ(s) =
e−γs

s

∞

∏
n=1

(
1+

s
n

)−1
es/n

holds.
(d) Let z(s)= Γ′(s)

Γ(s) be the Digamma function. Using the Euler–Maclaurin summation formula

∑
n=N
n=0 f (n)=

∫ N
0 f (x)dx+ 1

2 ( f (0)+ f (N))+ 1
12 ( f ′(0)− f ′(N))+R, with |R| ≤ 1

12
∫ N

0 | f ′′(x)|dx,
show that if |s|> δ and −π +δ ≤ arg(s)≤ π +δ then

z(s) = logs− 1
2s

+Oδ

(
|s|−2

)
.

Integrating on an appropriate contour, obtain Stirling’s Approximation: there is a constant
c such that for a∗R(s) in the given range,

logΓ(s) =
(

s− 1
2

)
logs− s+ c+Oδ

(
1
|s|

)
.
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(e) Show Euler’s reflection formula

Γ(s)Γ(1− s) =
π

sin(πs)
.

Conclude that Γ
(1

2

)
=
√

π and hence that
∫+∞

−∞
e−αx2

dx =
√

π

α
.

(f) Setting s = 1
2 + it in the reflection formula and letting t → ∞, show that c = 1

2 log(2π) in
Stirling’s Approximation.

(g) Show Legendre’s duplication formula

Γ(
s
2
)Γ(

s+1
2

) =
√

π21−s
Γ(s) .
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